Méheust Raphaël, Zelzion Ehud, Bhattacharya Debashish, Lopez Philippe, Bapteste Eric
Unité Mixte de Recherche 7138 Evolution Paris Seine, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Centre National de la Recherche Scientifique, Sorbonne Universités, 75005 Paris, France;
Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3579-84. doi: 10.1073/pnas.1517551113. Epub 2016 Mar 14.
The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance.
外来遗传信息的整合是真核生物进化的核心,这一点已在藻类和植物中卡尔文循环、血红素及类胡萝卜素生物合成途径的起源中得到证实。对于光合谱系而言,这种协调涉及三个系统发育起源不同的基因组(细胞核、质体和线粒体)。这些谱系的祖先克服的主要障碍包括利用产氧细胞器、优化光的利用以及通过将蛋白质重新定位到新生细胞器来稳定质体内共生体与宿主之间的伙伴关系。在这里,我们使用能够解开网状基因历史的蛋白质相似性网络来探索这些重大挑战是如何被应对的。我们发现了藻类和植物核基因组中一个先前隐藏的源自质体内共生体的组成部分:共生起源基因(S基因)。这些光合真核生物特有的复合蛋白编码一个与蓝细菌或另一个原核生物起源的结构域融合的源自蓝细菌的结构域,并且在进化过程中多次独立出现。转录组数据证明了S基因在广泛的藻类和植物中的存在和表达,功能数据表明它们参与了对氧化应激的耐受性、向光性以及对氮限制的适应。我们的研究证明了光合真核生物对遗传信息的“循环利用”以产生新的复合基因,其中许多基因在质体维持中发挥作用。