Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Paris, France.
Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS, Muséum National d'Histoire Naturelle, Paris, France.
Mol Biol Evol. 2023 Apr 4;40(4). doi: 10.1093/molbev/msad062.
Gram-positive Firmicutes bacteria and their mobile genetic elements (plasmids and bacteriophages) encode peptide-based quorum-sensing systems (QSSs) that orchestrate behavioral transitions as a function of population densities. In their simplest form, termed "RRNPP", these QSSs are composed of two adjacent genes: a communication propeptide and its cognate intracellular receptor. RRNPP QSSs notably regulate social/competitive behaviors such as virulence or biofilm formation in bacteria, conjugation in plasmids, or lysogeny in temperate bacteriophages. However, the genetic diversity and the prevalence of these communication systems, together with the breadth of behaviors they control, remain largely underappreciated. To better assess the impact of density dependency on microbial community dynamics and evolution, we developed the RRNPP_detector software, which predicts known and novel RRNPP QSSs in chromosomes, plasmids, and bacteriophages of Firmicutes. Applying RRNPP_detector against available complete genomes of viruses and Firmicutes, we identified a rich repertoire of RRNPP QSSs from 11 already known subfamilies and 21 novel high-confidence candidate subfamilies distributed across a vast diversity of taxa. The analysis of high-confidence RRNPP subfamilies notably revealed 14 subfamilies shared between chromosomes/plasmids/phages, 181 plasmids and 82 phages encoding multiple communication systems, phage-encoded QSSs predicted to dynamically modulate bacterial behaviors, and 196 candidate biosynthetic gene clusters under density-dependent regulation. Overall, our work enhances the field of quorum-sensing research and reveals novel insights into the coevolution of gram-positive bacteria and their mobile genetic elements.
革兰氏阳性厚壁菌门细菌及其可移动遗传元件(质粒和噬菌体)编码基于肽的群体感应系统(QSS),这些系统根据种群密度协调行为转变。在最简单的形式中,这些 QSS 被称为“RRNPP”,由两个相邻的基因组成:一个通信前肽和其同源的细胞内受体。RRNPP QSS 显著调节细菌的社会/竞争行为,如毒力或生物膜形成、质粒的接合或温和噬菌体的溶原性。然而,这些通讯系统的遗传多样性和普遍性,以及它们控制的行为范围,在很大程度上仍未被充分认识。为了更好地评估密度依赖性对微生物群落动态和进化的影响,我们开发了 RRNPP_detector 软件,该软件可预测厚壁菌门染色体、质粒和噬菌体中已知和新的 RRNPP QSS。应用 RRNPP_detector 对现有的病毒和厚壁菌门完整基因组进行分析,我们从 11 个已知亚家族和 21 个新的高置信度候选亚家族中鉴定出丰富的 RRNPP QSS,这些亚家族分布在广泛的分类群中。对高置信度 RRNPP 亚家族的分析特别揭示了 14 个在染色体/质粒/噬菌体之间共享的亚家族、编码多个通讯系统的 181 个质粒和 82 个噬菌体、预测动态调节细菌行为的噬菌体编码 QSS 以及 196 个受密度依赖性调节的候选生物合成基因簇。总的来说,我们的工作增强了群体感应研究领域,并揭示了革兰氏阳性菌及其可移动遗传元件共同进化的新见解。