Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom.
Institut de Recherches Labiris, B-1070 Anderlecht, Belgium.
J Biol Chem. 2018 Aug 17;293(33):12862-12876. doi: 10.1074/jbc.RA117.001286. Epub 2018 Jun 7.
Mitochondrial tRNAs are transcribed as long polycistronic transcripts of precursor tRNAs and undergo posttranscriptional modifications such as endonucleolytic processing and methylation required for their correct structure and function. Among them, 5'-end processing and purine 9 N1-methylation of mitochondrial tRNA are catalyzed by two proteinaceous complexes with overlapping subunit composition. The Mg-dependent RNase P complex for 5'-end cleavage comprises the methyltransferase domain-containing protein tRNA methyltransferase 10C, mitochondrial RNase P subunit (TRMT10C/MRPP1), short-chain oxidoreductase hydroxysteroid 17β-dehydrogenase 10 (HSD17B10/MRPP2), and metallonuclease KIAA0391/MRPP3. An MRPP1-MRPP2 subcomplex also catalyzes the formation of 1-methyladenosine/1-methylguanosine at position 9 using -adenosyl-l-methionine as methyl donor. However, a lack of structural information has precluded insights into how these complexes methylate and process mitochondrial tRNA. Here, we used a combination of X-ray crystallography, interaction and activity assays, and small angle X-ray scattering (SAXS) to gain structural insight into the two tRNA modification complexes and their components. The MRPP1 N terminus is involved in tRNA binding and monomer-monomer self-interaction, whereas the C-terminal SPOUT fold contains key residues for -adenosyl-l-methionine binding and N1-methylation. The entirety of MRPP1 interacts with MRPP2 to form the N1-methylation complex, whereas the MRPP1-MRPP2-MRPP3 RNase P complex only assembles in the presence of precursor tRNA. This study proposes low-resolution models of the MRPP1-MRPP2 and MRPP1-MRPP2-MRPP3 complexes that suggest the overall architecture, stoichiometry, and orientation of subunits and tRNA substrates.
线粒体 tRNA 作为前体 tRNA 的长多顺反子转录物被转录,并经历转录后修饰,如内切核酸酶加工和甲基化,这些修饰对于它们的正确结构和功能是必需的。其中,线粒体 tRNA 的 5'端加工和嘌呤 9 N1-甲基化由两个具有重叠亚基组成的蛋白复合物催化。Mg 依赖性 RNase P 复合物用于 5'端切割,由包含甲基转移酶结构域的蛋白 tRNA 甲基转移酶 10C、线粒体 RNase P 亚基(TRMT10C/MRPP1)、短链氧化还原酶羟甾酮 17β-脱氢酶 10(HSD17B10/MRPP2)和金属核酸酶 KIAA0391/MRPP3 组成。MRPP1-MRPP2 亚复合物也使用 -腺苷甲硫氨酸作为甲基供体催化位置 9 处的 1-甲基腺苷/1-甲基鸟苷的形成。然而,由于缺乏结构信息,无法深入了解这些复合物如何甲基化和加工线粒体 tRNA。在这里,我们使用 X 射线晶体学、相互作用和活性测定以及小角 X 射线散射(SAXS)的组合,获得了对这两个 tRNA 修饰复合物及其成分的结构见解。MRPP1 的 N 端参与 tRNA 结合和单体-单体自身相互作用,而 C 端 SPOUT 折叠包含关键残基用于 -腺苷甲硫氨酸结合和 N1-甲基化。MRPP1 的全部与 MRPP2 相互作用形成 N1-甲基化复合物,而只有在存在前体 tRNA 的情况下,MRPP1-MRPP2-MRPP3 RNase P 复合物才会组装。这项研究提出了 MRPP1-MRPP2 和 MRPP1-MRPP2-MRPP3 复合物的低分辨率模型,这些模型提出了亚基和 tRNA 底物的整体架构、化学计量和取向。