Suppr超能文献

黑洞周围暗物质尖峰内的弱湮灭尖点。

Weak annihilation cusp inside the dark matter spike about a black hole.

作者信息

Shapiro Stuart L, Shelton Jessie

机构信息

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Phys Rev D. 2016 Jun 15;93(12). doi: 10.1103/PhysRevD.93.123510. Epub 2016 Jun 7.

Abstract

We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic model for an isotropic phase space distribution function that accounts for annihilation and reproduces the "weak cusp" found by Vasiliev for DM deep within the spike and away from its boundaries. The DM density in the cusp varies as for -wave annihilation, where is the distance from the central black hole, and is not a flat "plateau" profile. We then extend this model by incorporating a loss cone that accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its density decreases with time. We treat two cases, one for -wave and the other for -wave DM annihilation, adopting parameters characteristic of the Milky Way nuclear core and typical WIMP models for DM. The cusp density profile for -wave annihilation is weaker, varying like ~, but is still not a flat plateau.

摘要

我们重新研究了湮灭对围绕大质量黑洞的球状密度尖峰中无碰撞暗物质(DM)分布的影响。我们首先为各向同性相空间分布函数构建了一个非常简单、具有启发性的解析模型,该模型考虑了湮灭,并再现了瓦西里耶夫在尖峰深处且远离其边界处发现的暗物质的“弱尖点”。对于 - 波湮灭,尖点处的暗物质密度随 变化,其中 是到中心黑洞的距离,且不是平坦的“平台”分布。然后,我们通过纳入一个考虑黑洞捕获暗物质粒子的损失锥来扩展这个模型。损失锥通过一个去除捕获轨道的边界条件来实现,从而产生一个各向异性的分布函数。最后,我们通过对玻尔兹曼方程积分来演化初始尖峰分布函数,以展示弱尖点如何随时间增长以及其密度如何降低。我们考虑两种情况,一种是 - 波暗物质湮灭,另一种是 - 波暗物质湮灭,采用银河系核球的特征参数以及典型的弱相互作用大质量粒子(WIMP)暗物质模型。对于 - 波湮灭,尖点密度分布较弱,其变化类似于 ~,但仍然不是平坦的平台。

相似文献

1
Weak annihilation cusp inside the dark matter spike about a black hole.
Phys Rev D. 2016 Jun 15;93(12). doi: 10.1103/PhysRevD.93.123510. Epub 2016 Jun 7.
2
Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?
Phys Rev Lett. 2014 Oct 10;113(15):151302. doi: 10.1103/PhysRevLett.113.151302. Epub 2014 Oct 9.
3
Black Hole Window into p-Wave Dark Matter Annihilation.
Phys Rev Lett. 2015 Dec 4;115(23):231302. doi: 10.1103/PhysRevLett.115.231302. Epub 2015 Dec 2.
4
Search for Gamma-ray Emission from p-wave Dark Matter Annihilation in the Galactic Center.
Phys Rev D. 2019 May 15;99(10). doi: 10.1103/PhysRevD.99.103007.
5
New probe of dark-matter properties: gravitational waves from an intermediate-mass black hole embedded in a dark-matter minispike.
Phys Rev Lett. 2013 May 31;110(22):221101. doi: 10.1103/PhysRevLett.110.221101. Epub 2013 May 29.
8
Evolution of the dark matter distribution at the galactic center.
Phys Rev Lett. 2004 May 21;92(20):201304. doi: 10.1103/PhysRevLett.92.201304. Epub 2004 May 20.
9
Self-Interacting Dark Matter Solves the Final Parsec Problem of Supermassive Black Hole Mergers.
Phys Rev Lett. 2024 Jul 12;133(2):021401. doi: 10.1103/PhysRevLett.133.021401.
10
Annihilating cold dark matter.
Phys Rev Lett. 2000 Oct 16;85(16):3335-8. doi: 10.1103/PhysRevLett.85.3335.

引用本文的文献

1
Investigating the nature of mass distribution surrounding the Galactic supermassive black hole.
Sci Rep. 2022 Sep 10;12(1):15258. doi: 10.1038/s41598-022-18946-7.
3
The Collisional Penrose Process.
Gen Relativ Gravit. 2018;50(6). doi: 10.1007/s10714-018-2373-5.

本文引用的文献

1
Evidence for Unresolved γ-Ray Point Sources in the Inner Galaxy.
Phys Rev Lett. 2016 Feb 5;116(5):051103. doi: 10.1103/PhysRevLett.116.051103. Epub 2016 Feb 4.
2
Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess.
Phys Rev Lett. 2016 Feb 5;116(5):051102. doi: 10.1103/PhysRevLett.116.051102. Epub 2016 Feb 4.
3
Black Hole Window into p-Wave Dark Matter Annihilation.
Phys Rev Lett. 2015 Dec 4;115(23):231302. doi: 10.1103/PhysRevLett.115.231302. Epub 2015 Dec 2.
4
Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data.
Phys Rev Lett. 2015 Dec 4;115(23):231301. doi: 10.1103/PhysRevLett.115.231301. Epub 2015 Nov 30.
5
Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?
Phys Rev Lett. 2014 Oct 10;113(15):151302. doi: 10.1103/PhysRevLett.113.151302. Epub 2014 Oct 9.
6
Clumps and streams in the local dark matter distribution.
Nature. 2008 Aug 7;454(7205):735-8. doi: 10.1038/nature07153.
7
Dark matter profile in the galactic center.
Phys Rev Lett. 2004 Aug 6;93(6):061302. doi: 10.1103/PhysRevLett.93.061302.
8
Evolution of the dark matter distribution at the galactic center.
Phys Rev Lett. 2004 May 21;92(20):201304. doi: 10.1103/PhysRevLett.92.201304. Epub 2004 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验