Suppr超能文献

基于 K-Means 聚类、局部离群因子和多元高斯分布的活动识别自适应算法。

A User-Adaptive Algorithm for Activity Recognition Based on K-Means Clustering, Local Outlier Factor, and Multivariate Gaussian Distribution.

机构信息

School of Logistics Engineering, Wuhan University of Technology, Wuhan 430070, China.

出版信息

Sensors (Basel). 2018 Jun 6;18(6):1850. doi: 10.3390/s18061850.

Abstract

Mobile activity recognition is significant to the development of human-centric pervasive applications including elderly care, personalized recommendations, etc. Nevertheless, the distribution of inertial sensor data can be influenced to a great extent by varying users. This means that the performance of an activity recognition classifier trained by one user’s dataset will degenerate when transferred to others. In this study, we focus on building a personalized classifier to detect four categories of human activities: light intensity activity, moderate intensity activity, vigorous intensity activity, and fall. In order to solve the problem caused by different distributions of inertial sensor signals, a user-adaptive algorithm based on K-Means clustering, local outlier factor (LOF), and multivariate Gaussian distribution (MGD) is proposed. To automatically cluster and annotate a specific user’s activity data, an improved K-Means algorithm with a novel initialization method is designed. By quantifying the samples’ informative degree in a labeled individual dataset, the most profitable samples can be selected for activity recognition model adaption. Through experiments, we conclude that our proposed models can adapt to new users with good recognition performance.

摘要

移动活动识别对于以人为中心的普及应用的发展具有重要意义,包括老年人护理、个性化推荐等。然而,惯性传感器数据的分布在很大程度上会受到不同用户的影响。这意味着,由一个用户数据集训练的活动识别分类器的性能在转移到其他用户时会下降。在本研究中,我们专注于构建一个个性化的分类器,以检测四类人体活动:低强度活动、中强度活动、高强度活动和跌倒。为了解决由于惯性传感器信号分布不同而导致的问题,提出了一种基于 K-Means 聚类、局部离群因子 (LOF) 和多元高斯分布 (MGD) 的用户自适应算法。为了自动聚类和注释特定用户的活动数据,设计了一种具有新颖初始化方法的改进 K-Means 算法。通过量化标记个体数据集样本的信息量,可以选择最有利可图的样本进行活动识别模型自适应。通过实验,我们得出结论,我们提出的模型可以很好地适应新用户,具有良好的识别性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9828/6022149/dc82ba434720/sensors-18-01850-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验