Suppr超能文献

可穿戴加速度传感器在人体活动识别中的综合分析

A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.

机构信息

Electrical and Computer Engineering Department, McGill University, Montréal, QC H3A 0E9, Canada.

出版信息

Sensors (Basel). 2017 Mar 7;17(3):529. doi: 10.3390/s17030529.

Abstract

Sensor-based motion recognition integrates the emerging area of wearable sensors with novel machine learning techniques to make sense of low-level sensor data and provide rich contextual information in a real-life application. Although Human Activity Recognition (HAR) problem has been drawing the attention of researchers, it is still a subject of much debate due to the diverse nature of human activities and their tracking methods. Finding the best predictive model in this problem while considering different sources of heterogeneities can be very difficult to analyze theoretically, which stresses the need of an experimental study. Therefore, in this paper, we first create the most complete dataset, focusing on accelerometer sensors, with various sources of heterogeneities. We then conduct an extensive analysis on feature representations and classification techniques (the most comprehensive comparison yet with 293 classifiers) for activity recognition. Principal component analysis is applied to reduce the feature vector dimension while keeping essential information. The average classification accuracy of eight sensor positions is reported to be 96.44% ± 1.62% with 10-fold evaluation, whereas accuracy of 79.92% ± 9.68% is reached in the subject-independent evaluation. This study presents significant evidence that we can build predictive models for HAR problem under more realistic conditions, and still achieve highly accurate results.

摘要

基于传感器的运动识别将新兴的可穿戴传感器领域与新颖的机器学习技术相结合,从低级别的传感器数据中获取意义,并在实际应用中提供丰富的上下文信息。尽管人类活动识别 (HAR) 问题已经引起了研究人员的关注,但由于人类活动的多样性及其跟踪方法,它仍然是一个备受争议的话题。在考虑到不同异质性来源的情况下,在这个问题中找到最佳的预测模型在理论上进行分析可能非常困难,这强调了进行实验研究的必要性。因此,在本文中,我们首先创建了最完整的数据集,重点是加速度计传感器,并考虑了各种异质性来源。然后,我们对活动识别的特征表示和分类技术(迄今为止最全面的比较,有 293 个分类器)进行了广泛的分析。主成分分析用于在保持重要信息的同时降低特征向量的维度。报告的 8 个传感器位置的平均分类准确率为 96.44%±1.62%,10 倍评估,而在独立于主题的评估中达到了 79.92%±9.68%。这项研究提供了重要的证据,表明我们可以在更现实的条件下为 HAR 问题构建预测模型,并且仍然可以获得非常准确的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7ca/5375815/3d980b5bbb7e/sensors-17-00529-g011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验