Department of Pharmacology , Case Western Reserve University School of Medicine , Cleveland , Ohio 44106 , United States.
ACS Chem Biol. 2018 Aug 17;13(8):2121-2129. doi: 10.1021/acschembio.8b00290. Epub 2018 Jun 15.
Vitamin A serves essential functions in mammalian biology as a signaling molecule and chromophore. This lipid can be synthesized from more than 50 putative dietary provitamin A precursor molecules which contain at least one unsubstituted β-ionone ring. We here scrutinized the enzymatic properties and substrate specificities of the two structurally related carotenoid cleavage dioxygenases (CCDs) which catalyze this synthesis. Recombinant BCO1 split substrates across the C15,C15' double bond adjacent to a canonical β-ionone ring site to vitamin A aldehyde. Substitution of the ring with a hydroxyl group prevented this conversion. The removal of methyl groups from the polyene carbon backbone of the substrate did not impede enzyme activity. Homology modeling and site-directed mutagenesis identified amino acid residues at the entrance of the substrate tunnel, which determined BCO1's specificity for the canonical β-ionone ring site. In contrast, BCO2 split substrates across the C9,C10 double bond adjacent to assorted ionone ring sites. Kinetic analysis revealed a higher catalytic efficiency of BCO2 with substrates bearing 3-hydroxy-β-ionone rings. In the mouse intestine, the asymmetric carotenoid β-cryptoxanthin with one canonical and one 3-hydroxy-β-ionone ring site was meticulously converted to vitamin A. The tailoring of this asymmetric substrate occurred by a stepwise processing of the carotenoid substrate by both CCDs and involved a β-apo-10'-carotenal intermediate. Thus, opposite selectivity for ionone ring sites of the two mammalian CCDs complement each other in the metabolic challenge of vitamin A production from a chemically diverse set of precursor molecules.
维生素 A 在哺乳动物生物学中作为信号分子和生色团发挥着重要作用。这种脂溶性物质可以由 50 多种假定的膳食维生素 A 前体分子合成,这些前体分子至少含有一个未取代的β-紫罗兰酮环。我们在这里仔细研究了两种结构相关的类胡萝卜素裂解双加氧酶(CCDs)的酶学性质和底物特异性,这两种酶催化了这种合成。重组 BCO1 可在靠近典型β-紫罗兰酮环位点的 C15、C15'双键处裂解底物,生成维生素 A 醛。环上取代一个羟基可阻止这种转化。底物多烯碳骨架上的甲基被去除不会阻碍酶的活性。同源建模和定点突变鉴定出位于底物隧道入口处的氨基酸残基,这些残基决定了 BCO1 对典型β-紫罗兰酮环位点的特异性。相比之下,BCO2 可在靠近各种紫罗兰酮环位点的 C9、C10 双键处裂解底物。动力学分析显示,BCO2 对带有 3-羟基-β-紫罗兰酮环的底物具有更高的催化效率。在小鼠肠道中,具有一个典型和一个 3-羟基-β-紫罗兰酮环位点的不对称类胡萝卜素β-隐黄质被精细地转化为维生素 A。这种不对称底物的修饰是通过两种 CCD 对类胡萝卜素底物的逐步加工完成的,涉及β-apo-10'-类胡萝卜素醛中间产物。因此,两种哺乳动物 CCD 对紫罗兰酮环位点的选择性相反,在从化学多样性的前体分子中生产维生素 A 的代谢挑战中相互补充。