Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Physics, University of California, Berkeley, California 94720, USA.
Phys Rev Lett. 2018 May 25;120(21):216801. doi: 10.1103/PhysRevLett.120.216801.
The topological phases of periodically driven, or Floquet systems, rely on a perfectly periodic modulation of system parameters in time. Even the smallest deviation from periodicity leads to decoherence, causing the boundary (end) states to leak into the system's bulk. Here, we show that in one dimension this decay of topologically protected end states depends fundamentally on the nature of the bulk states: a dispersive bulk results in an exponential decay, while a localized bulk slows the decay down to a diffusive process. The localization can be due to disorder, which remarkably counteracts decoherence even when it breaks the symmetry responsible for the topological protection. We derive this result analytically, using a novel, discrete-time Floquet-Lindblad formalism and confirm our findings with the help of numerical simulations. Our results are particularly relevant for experiments, where disorder can be tailored to protect Floquet topological phases from decoherence.
周期性驱动或 Floquet 系统的拓扑相依赖于系统参数在时间上的完美周期性调制。即使是最小的偏离周期性也会导致退相干,从而导致边界(末端)状态泄漏到系统的体相。在这里,我们表明在一维空间中,这种拓扑保护末端状态的衰减从根本上取决于体相状态的性质:色散体相导致指数衰减,而局域体相则将衰减减慢到扩散过程。局域化可能是由于无序引起的,即使无序破坏了导致拓扑保护的对称性,它也能显著地抵抗退相干。我们使用一种新颖的离散时间 Floquet-Lindblad 形式来分析地推导这个结果,并借助数值模拟来验证我们的发现。我们的结果对于实验特别相关,在实验中可以通过控制无序来保护 Floquet 拓扑相免受退相干的影响。