Suppr超能文献

具有反事实效应修饰因子的边际结构模型。

Marginal Structural Models with Counterfactual Effect Modifiers.

作者信息

Zheng Wenjing, Luo Zhehui, van der Laan Mark J

机构信息

Division of Biostatistics, University of California, Berkeley, USA.

Center for Targeted Learning, University of California, Berkeley, USA.

出版信息

Int J Biostat. 2018 Jun 8;14(1):/j/ijb.2018.14.issue-1/ijb-2018-0039/ijb-2018-0039.xml. doi: 10.1515/ijb-2018-0039.

Abstract

UNLABELLED

In health and social sciences, research questions often involve systematic assessment of the modification of treatment causal effect by patient characteristics. In longitudinal settings, time-varying or post-intervention effect modifiers are also of interest. In this work, we investigate the robust and efficient estimation of the Counterfactual-History-Adjusted Marginal Structural Model (van der Laan MJ, Petersen M. Statistical learning of origin-specific statically optimal individualized treatment rules. Int J Biostat. 2007;3), which models the conditional intervention-specific mean outcome given a counterfactual modifier history in an ideal experiment. We establish the semiparametric efficiency theory for these models, and present a substitution-based, semiparametric efficient and doubly robust estimator using the targeted maximum likelihood estimation methodology (TMLE, e.g. van der Laan MJ, Rubin DB. Targeted maximum likelihood learning. Int J Biostat. 2006;2, van der Laan MJ, Rose S. Targeted learning: causal inference for observational and experimental data, 1st ed. Springer Series in Statistics. Springer, 2011). To facilitate implementation in applications where the effect modifier is high dimensional, our third contribution is a projected influence function (and the corresponding projected TMLE estimator), which retains most of the robustness of its efficient peer and can be easily implemented in applications where the use of the efficient influence function becomes taxing. We compare the projected TMLE estimator with an Inverse Probability of Treatment Weighted estimator (e.g. Robins JM. Marginal structural models. In: Proceedings of the American Statistical Association. Section on Bayesian Statistical Science, 1-10. 1997a, Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men.

EPIDEMIOLOGY

2000;11:561-570), and a non-targeted G-computation estimator (Robins JM. A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. Math Modell. 1986;7:1393-1512.). The comparative performance of these estimators is assessed in a simulation study. The use of the projected TMLE estimator is illustrated in a secondary data analysis for the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial where effect modifiers are subject to missing at random.

摘要

未标注

在健康与社会科学领域,研究问题常常涉及对患者特征对治疗因果效应的改变进行系统评估。在纵向研究中,时变或干预后的效应修饰因素也备受关注。在这项工作中,我们研究了反事实历史调整边际结构模型(范德·拉恩MJ,彼得森M。特定起源的静态最优个体化治疗规则的统计学习。《国际生物统计学杂志》。2007年;3)的稳健且有效的估计方法,该模型在理想实验中根据反事实修饰因素历史对特定干预条件下的平均结果进行建模。我们建立了这些模型的半参数效率理论,并使用靶向最大似然估计方法(TMLE,例如范德·拉恩MJ,鲁宾DB。靶向最大似然学习。《国际生物统计学杂志》。2006年;2,范德·拉恩MJ,罗斯S。靶向学习:观察性和实验性数据的因果推断,第1版。施普林格统计学系列。施普林格,2011)提出了一种基于替换的半参数有效且双重稳健的估计量。为便于在效应修饰因素为高维的应用中实施,我们的第三个贡献是一个投影影响函数(以及相应的投影TMLE估计量),它保留了其有效同类方法的大部分稳健性,并且在使用有效影响函数变得繁重的应用中易于实施。我们将投影TMLE估计量与治疗权重逆概率估计量(例如罗宾斯JM。边际结构模型。载于:《美国统计协会会议录》。贝叶斯统计科学分会,1 - 10。1997a,埃尔南MA,布鲁姆巴克B,罗宾斯JM。边际结构模型以估计齐多夫定对HIV阳性男性生存的因果效应。

流行病学

2000年;11:561 - 570)以及非靶向G计算估计量(罗宾斯JM。在具有持续暴露期的死亡率研究中因果推断的一种新方法——应用于控制健康工人幸存者效应。《数学模型》。1986年;7:1393 - 1512)进行了比较。在模拟研究中评估了这些估计量的比较性能。在缓解抑郁症的序贯治疗替代方案(STAR*D)试验的二次数据分析中展示了投影TMLE估计量的使用,其中效应修饰因素存在随机缺失情况。

相似文献

1
Marginal Structural Models with Counterfactual Effect Modifiers.
Int J Biostat. 2018 Jun 8;14(1):/j/ijb.2018.14.issue-1/ijb-2018-0039/ijb-2018-0039.xml. doi: 10.1515/ijb-2018-0039.
2
Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function.
Int J Biostat. 2016 May 1;12(1):233-52. doi: 10.1515/ijb-2015-0036.
3
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
4
Targeted minimum loss based estimator that outperforms a given estimator.
Int J Biostat. 2012 May 18;8(1):Article 11. doi: 10.1515/1557-4679.1332.
5
Double robust and efficient estimation of a prognostic model for events in the presence of dependent censoring.
Biostatistics. 2016 Jan;17(1):165-77. doi: 10.1093/biostatistics/kxv028. Epub 2015 Jul 29.
6
7
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054.
9
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.
10
Statistical learning of origin-specific statically optimal individualized treatment rules.
Int J Biostat. 2007;3(1):Article 6. doi: 10.2202/1557-4679.1040.

引用本文的文献

1
Introduction to clinical research based on modern epidemiology.
Clin Exp Nephrol. 2020 Jun;24(6):491-499. doi: 10.1007/s10157-020-01870-3. Epub 2020 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验