van der Laan Mark J, Gruber Susan
University of California-Berkeley, Berkeley, CA, USA.
Int J Biostat. 2012;8(1). doi: 10.1515/1557-4679.1370.
We consider estimation of the effect of a multiple time point intervention on an outcome of interest, where the intervention nodes are subject to time-dependent confounding by intermediate covariates. In previous work van der Laan (2010) and Stitelman and van der Laan (2011a) developed and implemented a closed form targeted maximum likelihood estimator (TMLE) relying on the log-likelihood loss function, and demonstrated important gains relative to inverse probability of treatment weighted estimators and estimating equation based estimators. This TMLE relies on an initial estimator of the entire probability distribution of the longitudinal data structure. To enhance the finite sample performance of the TMLE of the target parameter it is of interest to select the smallest possible relevant part of the data generating distribution, which is estimated and updated by TMLE. Inspired by this goal, we develop a new closed form TMLE of an intervention specific mean outcome based on general longitudinal data structures. The target parameter is represented as an iterative sequence of conditional expectations of the outcome of interest. This collection of conditional means represents the relevant part, which is estimated and updated using the general TMLE algorithm. We also develop this new TMLE for other causal parameters, such as parameters defined by working marginal structural models. The theoretical properties of the TMLE are also practically demonstrated with a small scale simulation study.The proposed TMLE is building upon a previously proposed estimator Bang and Robins (2005) by integrating some of its key and innovative ideas into the TMLE framework.
我们考虑估计多时间点干预对感兴趣结局的影响,其中干预节点受到中间协变量随时间变化的混杂影响。在之前的工作中,范德·拉恩(2010年)以及斯蒂特尔曼和范德·拉恩(2011年a)开发并实施了一种基于对数似然损失函数的封闭形式目标最大似然估计器(TMLE),并证明相对于治疗逆概率加权估计器和基于估计方程的估计器有显著优势。这种TMLE依赖于纵向数据结构整个概率分布的初始估计器。为了提高目标参数TMLE的有限样本性能,选择数据生成分布中尽可能小的相关部分是有意义的,该部分由TMLE进行估计和更新。受此目标启发,我们基于一般纵向数据结构开发了一种针对特定干预平均结局的新封闭形式TMLE。目标参数表示为感兴趣结局的条件期望的迭代序列。这组条件均值代表相关部分,使用一般TMLE算法对其进行估计和更新。我们还针对其他因果参数开发了这种新的TMLE,例如由工作边际结构模型定义的参数。通过小规模模拟研究实际展示了TMLE的理论性质。所提出的TMLE是在之前提出的估计器班和罗宾斯(2005年)的基础上,将其一些关键和创新思想整合到TMLE框架中构建而成的。