Kachel Stefan R, Dombrowski Pierre-Martin, Breuer Tobias, Gottfried J Michael, Witte Gregor
Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany.
Fachbereich Physik, Philipps-Universität Marburg Renthof 7 35032 Marburg Germany
Chem Sci. 2020 Dec 30;12(7):2575-2585. doi: 10.1039/d0sc05633b.
Hybrid systems of two-dimensional (2D) materials such as transition metal dichalcogenides (TMDCs) and organic semiconductors (OSCs) have become subject of great interest for future device architectures. Although OSC-TMDC hybrid systems have been used in first device demonstrations, the precise preparation of ultra-thin OSC films on TMDCs has not been addressed. Due to the weak van der Waals interaction between TMDCs and OSCs, this requires precise knowledge of the thermodynamics at hand. Here, we use temperature-programmed desorption (TPD) and Monte Carlo (MC) simulations of TPD traces to characterize the desorption kinetics of pentacene (PEN) and perfluoropentacene (PFP) on MoS as a model system for OSCs on TMDCs. We show that the monolayers of PEN and PFP are thermally stabilized compared to their multilayers, which allows preparation of nominal monolayers by selective desorption of multilayers. This stabilization is, however, caused by entropy due to a high molecular mobility rather than an enhanced molecule-substrate bond. Consequently, the nominal monolayers are not densely packed films. Molecular mobility can be suppressed in mixed monolayers of PEN and PFP that, due to intermolecular attraction, form highly ordered films as shown by scanning tunneling microscopy. Although this reduces the entropic stabilization, the intermolecular attraction further stabilizes mixed films.
二维(2D)材料的混合系统,如过渡金属二硫属化物(TMDCs)和有机半导体(OSCs),已成为未来器件架构备受关注的主题。尽管OSC-TMDC混合系统已用于首次器件演示,但在TMDCs上精确制备超薄OSC薄膜的问题尚未得到解决。由于TMDCs和OSCs之间的范德华相互作用较弱,这需要对当前的热力学有精确的了解。在这里,我们使用程序升温脱附(TPD)和TPD曲线的蒙特卡罗(MC)模拟来表征并五苯(PEN)和全氟并五苯(PFP)在MoS上的脱附动力学,作为TMDCs上OSCs的模型系统。我们表明,与多层膜相比,PEN和PFP的单层膜具有热稳定性,这使得通过多层膜的选择性脱附来制备标称单层膜成为可能。然而,这种稳定性是由于高分子迁移率导致的熵引起的,而不是分子与底物键的增强。因此,标称单层膜不是致密堆积的薄膜。在PEN和PFP的混合单层膜中,分子迁移率可以受到抑制,由于分子间吸引力,混合单层膜形成高度有序的薄膜,如扫描隧道显微镜所示。虽然这降低了熵稳定化,但分子间吸引力进一步稳定了混合膜。