Suppr超能文献

蛋白质水合作用的几何结构。

The geometry of protein hydration.

机构信息

Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.

出版信息

J Chem Phys. 2018 Jun 7;148(21):215101. doi: 10.1063/1.5026744.

Abstract

Based on molecular dynamics simulations of four globular proteins in dilute aqueous solution, with three different water models, we examine several, essentially geometrical, aspects of the protein-water interface that remain controversial or incompletely understood. First, we compare different hydration shell definitions, based on spatial or topological proximity criteria. We find that the best method for constructing monolayer shells with nearly complete coverage is to use a 5 Å water-carbon cutoff and a 4 Å water-water cutoff. Using this method, we determine a mean interfacial water area of 11.1 Å which appears to be a universal property of the protein-water interface. We then analyze the local coordination and packing density of water molecules in the hydration shells and in subsets of the first shell. The mean polar water coordination number in the first shell remains within 1% of the bulk-water value, and it is 5% lower in the nonpolar part of the first shell. The local packing density is obtained from additively weighted Voronoi tessellation, arguably the most physically realistic method for allocating space between protein and water. We find that water in all parts of the first hydration shell, including the nonpolar part, is more densely packed than in the bulk, with a shell-averaged density excess of 6% for all four proteins. We suggest reasons why this value differs from previous experimental and computational results, emphasizing the importance of a realistic placement of the protein-water dividing surface and the distinction between spatial correlation and packing density. The protein-induced perturbation of water coordination and packing density is found to be short-ranged, with an exponential decay "length" of 0.6 shells. We also compute the protein partial volume, analyze its decomposition, and argue against the relevance of electrostriction.

摘要

基于对四种球形蛋白质在稀水溶液中的分子动力学模拟,以及三种不同的水模型,我们检查了蛋白质-水界面的几个基本几何方面,这些方面仍然存在争议或尚未完全理解。首先,我们比较了基于空间或拓扑接近性标准的不同水合壳定义。我们发现,构建几乎完全覆盖的单层壳的最佳方法是使用 5 Å 水-碳截止和 4 Å 水-水截止。使用这种方法,我们确定了 11.1 Å 的平均界面水面积,这似乎是蛋白质-水界面的普遍特性。然后,我们分析了水合壳中和第一层子集内水分子的局部配位和堆积密度。第一层中极性水分子的平均配位数与体相水的值相差不到 1%,而非极性部分的配位数低 5%。局部堆积密度是通过加性加权 Voronoi 细分获得的,可以说是在蛋白质和水之间分配空间的最物理现实的方法。我们发现,第一层水合壳的所有部分(包括非极性部分)中的水的堆积密度都比体相高,所有四种蛋白质的壳平均密度过剩为 6%。我们提出了为什么这个值与以前的实验和计算结果不同的原因,强调了真实放置蛋白质-水界面和区分空间相关和堆积密度的重要性。发现蛋白质对水配位和堆积密度的扰动是短程的,具有 0.6 个壳的指数衰减“长度”。我们还计算了蛋白质的部分体积,分析了它的分解,并反对电致伸缩的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验