Suppr超能文献

耐热栖热菌聚磷酸葡萄糖激酶的热稳定性和活性的协同进化。

Coevolution of both Thermostability and Activity of Polyphosphate Glucokinase from Thermobifida fusca YX.

机构信息

Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, Tianjin, China.

Biological Systems Engineering Department, Virginia Tech, Blacksburg, Virginia, USA.

出版信息

Appl Environ Microbiol. 2018 Aug 1;84(16). doi: 10.1128/AEM.01224-18. Print 2018 Aug 15.

Abstract

Thermostability and specific activity of enzymes are two of the most important properties for industrial biocatalysts. Here, we developed a petri dish-based double-layer high-throughput screening (HTS) strategy for rapid identification of desired mutants of polyphosphate glucokinase (PPGK) from a thermophilic actinobacterium, YX, with both enhanced thermostability and activity. colonies representing a PPGK mutant library were grown on the first-layer Phytagel-based plates, which can remain solid for 1 h, even at heat treatment temperatures of more than 100°C. The second layer that was poured on the first layer contained agarose, substrates, glucose 6-phosphate dehydrogenase (G6PDH), the redox dye tetranitroblue tetrazolium (TNBT), and phenazine methosulfate. G6PDH was able to oxidize the product from the PPGK-catalyzed reaction and generate NADH, which can be easily examined by a TNBT-based colorimetric assay. The best mutant obtained after four rounds of directed evolution had a 7,200-fold longer half-life at 55°C, 19.8°C higher midpoint of unfolding temperature ( ), and a nearly 3-fold enhancement in specific activities compared to those of the wild-type PPGK. The best mutant was used to produce 9.98 g/liter -inositol from 10 g/liter glucose, with a theoretical yield of 99.8%, along with two other hyperthermophilic enzymes at 70°C. This PPGK mutant featuring both great thermostability and high activity would be useful for ATP-free production of glucose 6-phosphate or its derived products. Polyphosphate glucokinase (PPGK) is an enzyme that transfers a terminal phosphate group from polyphosphate to glucose, producing glucose 6-phosphate. A petri dish-based double-layer high-throughput screening strategy was developed by using ultrathermostable Phytagel as the first layer instead of agar or agarose, followed by a redox dye-based assay for rapid identification of ultrathermostable PPGK mutants. The best mutant featuring both great thermostability and high activity could produce glucose 6-phosphate from glucose and polyphosphate without ATP regeneration.

摘要

酶的热稳定性和比活性是工业生物催化剂最重要的两个特性。在这里,我们开发了一种基于培养皿的双层高通量筛选(HTS)策略,用于快速鉴定来自嗜热放线菌 YX 的聚磷酸葡萄糖激酶(PPGK)的所需突变体,该突变体兼具增强的热稳定性和活性。在第一层基于 Phytagel 的平板上培养代表 PPGK 突变体文库的菌落,即使在超过 100°C 的热处理温度下,该平板仍能保持 1 小时的固体状态。浇在第一层上的第二层含有琼脂糖、底物、葡萄糖 6-磷酸脱氢酶(G6PDH)、氧化还原染料四氮唑蓝四唑(TNBT)和吩嗪甲硫酸酯。G6PDH 能够氧化 PPGK 催化反应的产物并生成 NADH,这可以通过基于 TNBT 的比色测定法轻松检测到。经过四轮定向进化后获得的最佳突变体在 55°C 下的半衰期延长了 7200 倍,解折叠温度( )的中点升高了 19.8°C,比野生型 PPGK 的比活性提高了近 3 倍。最佳突变体用于从 10 g/L 葡萄糖生产 9.98 g/L 肌醇,在 70°C 下还使用另外两种超嗜热酶,理论产率为 99.8%。这种兼具高稳定性和高活性的 PPGK 突变体将有助于无 ATP 生产葡萄糖 6-磷酸或其衍生产品。聚磷酸葡萄糖激酶(PPGK)是一种将末端磷酸基团从多聚磷酸转移到葡萄糖上的酶,生成葡萄糖 6-磷酸。通过使用超耐热性的 Phytagel 作为第一层,而不是琼脂或琼脂糖,开发了一种基于培养皿的双层高通量筛选策略,然后使用氧化还原染料测定法快速鉴定超耐热性 PPGK 突变体。具有高热稳定性和高活性的最佳突变体可以在没有 ATP 再生的情况下从葡萄糖和多聚磷酸生产葡萄糖 6-磷酸。

相似文献

1
Coevolution of both Thermostability and Activity of Polyphosphate Glucokinase from Thermobifida fusca YX.
Appl Environ Microbiol. 2018 Aug 1;84(16). doi: 10.1128/AEM.01224-18. Print 2018 Aug 15.
3
Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2010 Jun;87(2):703-13. doi: 10.1007/s00253-010-2568-5. Epub 2010 Apr 9.
6
Engineering a thermostable highly active glucose 6-phosphate dehydrogenase and its application to hydrogen production in vitro.
Appl Microbiol Biotechnol. 2018 Apr;102(7):3203-3215. doi: 10.1007/s00253-018-8798-7. Epub 2018 Feb 26.
7
Characterization of polyphosphate glucokinase SCO5059 from Streptomyces coelicolor A3(2).
Biosci Biotechnol Biochem. 2013;77(11):2322-4. doi: 10.1271/bbb.130498. Epub 2013 Nov 7.
8
Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice.
PLoS Pathog. 2013 Jan;9(1):e1003116. doi: 10.1371/journal.ppat.1003116. Epub 2013 Jan 10.
9
Polyphosphate-dependent enzymes in some coryneform bacteria isolated from sewage sludge.
FEMS Microbiol Lett. 1993 Mar 1;107(2-3):133-8. doi: 10.1111/j.1574-6968.1993.tb06019.x.
10
Two strictly polyphosphate-dependent gluco(manno)kinases from diazotrophic Cyanobacteria with potential to phosphorylate hexoses from polyphosphates.
Appl Microbiol Biotechnol. 2015 May;99(9):3887-900. doi: 10.1007/s00253-014-6184-7. Epub 2014 Nov 9.

引用本文的文献

1
Exploring the potential of myo-inositol in thyroid disease management: focus on thyroid cancer diagnosis and therapy.
Front Endocrinol (Lausanne). 2024 Sep 12;15:1418956. doi: 10.3389/fendo.2024.1418956. eCollection 2024.
3
Stoichiometric Conversion of Maltose for Biomanufacturing by Synthetic Enzymatic Biosystems.
Biodes Res. 2022 Jul 1;2022:9806749. doi: 10.34133/2022/9806749. eCollection 2022.
4
Biomanufacturing by In Vitro Biotransformation (ivBT) Using Purified Cascade Multi-enzymes.
Adv Biochem Eng Biotechnol. 2023;186:1-27. doi: 10.1007/10_2023_231.
5
Thermostability engineering of industrial enzymes through structure modification.
Appl Microbiol Biotechnol. 2022 Aug;106(13-16):4845-4866. doi: 10.1007/s00253-022-12067-x. Epub 2022 Jul 9.
8
Production of Glucose 6-Phosphate From a Cellulosic Feedstock in a One Pot Multi-Enzyme Synthesis.
Front Bioeng Biotechnol. 2021 Jun 2;9:678038. doi: 10.3389/fbioe.2021.678038. eCollection 2021.
9
An ATP-free in vitro synthetic enzymatic biosystem facilitating one-pot stoichiometric conversion of starch to mannitol.
Appl Microbiol Biotechnol. 2021 Mar;105(5):1913-1924. doi: 10.1007/s00253-021-11154-9. Epub 2021 Feb 5.
10
High-efficiency transformation of archaea by direct PCR products with its application to directed evolution of a thermostable enzyme.
Microb Biotechnol. 2021 Mar;14(2):453-464. doi: 10.1111/1751-7915.13613. Epub 2020 Jun 29.

本文引用的文献

2
ATP-free biosynthesis of a high-energy phosphate metabolite fructose 1,6-diphosphate by in vitro metabolic engineering.
Metab Eng. 2017 Jul;42:168-174. doi: 10.1016/j.ymben.2017.06.006. Epub 2017 Jun 15.
3
An appraisal of the enzyme stability-activity trade-off.
Evolution. 2017 Jul;71(7):1876-1887. doi: 10.1111/evo.13275. Epub 2017 Jun 8.
4
Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme.
Metab Eng. 2017 Jul;42:25-32. doi: 10.1016/j.ymben.2017.04.009. Epub 2017 May 4.
5
An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch.
Biotechnol Bioeng. 2017 Aug;114(8):1855-1864. doi: 10.1002/bit.26314. Epub 2017 May 8.
6
A root penetration model of Arabidopsis thaliana in phytagel medium with different strength.
J Plant Res. 2017 Sep;130(5):941-950. doi: 10.1007/s10265-017-0926-4. Epub 2017 Mar 18.
7
Biocatalytic Phosphorylations of Metabolites: Past, Present, and Future.
Trends Biotechnol. 2017 May;35(5):452-465. doi: 10.1016/j.tibtech.2017.01.005. Epub 2017 Feb 28.
8
Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy.
Appl Microbiol Biotechnol. 2017 Apr;101(8):3201-3211. doi: 10.1007/s00253-017-8090-2. Epub 2017 Jan 10.
9
Evolutionary drivers of thermoadaptation in enzyme catalysis.
Science. 2017 Jan 20;355(6322):289-294. doi: 10.1126/science.aah3717. Epub 2016 Dec 22.
10
In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose.
Metab Eng. 2017 Jan;39:110-116. doi: 10.1016/j.ymben.2016.11.002. Epub 2016 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验