Suppr超能文献

用于生物制造的合成酶生物系统对麦芽糖的化学计量转化

Stoichiometric Conversion of Maltose for Biomanufacturing by Synthetic Enzymatic Biosystems.

作者信息

Li Guowei, Wei Xinlei, Wu Ranran, Zhou Wei, Li Yunjie, Zhu Zhiguang, You Chun

机构信息

Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.

College of Biotechnology, Tianjin University of Science and Technology, 1038 Dagu Nanlu, Hexi District, Tianjin 300457, China.

出版信息

Biodes Res. 2022 Jul 1;2022:9806749. doi: 10.34133/2022/9806749. eCollection 2022.

Abstract

Maltose is a natural -(1,4)-linked disaccharide with wide applications in food industries and microbial fermentation. However, maltose has scarcely been used for biosynthesis, possibly because its phosphorylation by maltose phosphorylase (MP) yields -glucose 1-phosphate (-G1P) that cannot be utilized by -phosphoglucomutase (-PGM) commonly found in synthetic enzymatic biosystems previously constructed by our group. Herein, we designed an synthetic enzymatic reaction module comprised of MP, -phosphoglucomutase (-PGM), and polyphosphate glucokinase (PPGK) for the stoichiometric conversion of each maltose molecule to two glucose 6-phosphate (G6P) molecules. Based on this synthetic module, we further constructed two synthetic biosystems to produce bioelectricity and fructose 1,6-diphosphate (FDP), respectively. The 14-enzyme biobattery achieved a Faraday efficiency of 96.4% and a maximal power density of 0.6 mW/cm, whereas the 5-enzyme FDP-producing biosystem yielded 187.0 mM FDP from 50 g/L (139 mM) maltose by adopting a fed-batch substrate feeding strategy. Our study not only suggests new application scenarios for maltose but also provides novel strategies for the high-efficient production of bioelectricity and value-added biochemicals.

摘要

麦芽糖是一种天然的α-(1,4)-连接二糖,在食品工业和微生物发酵中有着广泛应用。然而,麦芽糖几乎未被用于生物合成,这可能是因为麦芽糖磷酸化酶(MP)使其磷酸化生成的α-葡萄糖1-磷酸(α-G1P)无法被我们小组之前构建的合成酶生物系统中常见的α-磷酸葡萄糖变位酶(α-PGM)所利用。在此,我们设计了一个由MP、α-磷酸葡萄糖变位酶(α-PGM)和多聚磷酸葡萄糖激酶(PPGK)组成的合成酶反应模块,用于将每个麦芽糖分子化学计量地转化为两个葡萄糖6-磷酸(G6P)分子。基于这个合成模块,我们进一步构建了两个合成生物系统,分别用于生产生物电和果糖1,6-二磷酸(FDP)。这个14酶生物电池的法拉第效率达到了96.4%,最大功率密度为0.6 mW/cm²,而这个5酶FDP生产生物系统通过采用分批补料底物添加策略,从50 g/L(139 mM)麦芽糖中产生了187.0 mM FDP。我们的研究不仅为麦芽糖提出了新的应用场景,还为高效生产生物电和增值生化物质提供了新策略

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaff/10521662/f4f861ecc0ec/9806749.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验