Suppr超能文献

基于一致性的部分相干性刻画立体 EEG 数据中的网络结构。

Characterization of network structure in stereoEEG data using consensus-based partial coherence.

机构信息

Donders Institute, Radboud University, Nijmegen, The Netherlands.

Department of Neuroscience, University of Parma, Parma, Italy.

出版信息

Neuroimage. 2018 Oct 1;179:385-402. doi: 10.1016/j.neuroimage.2018.06.011. Epub 2018 Jun 6.

Abstract

Coherence is a widely used measure to determine the frequency-resolved functional connectivity between pairs of recording sites, but this measure is confounded by shared inputs to the pair. To remove shared inputs, the 'partial coherence' can be computed by conditioning the spectral matrices of the pair on all other recorded channels, which involves the calculation of a matrix (pseudo-) inverse. It has so far remained a challenge to use the time-resolved partial coherence to analyze intracranial recordings with a large number of recording sites. For instance, calculating the partial coherence using a pseudoinverse method produces a high number of false positives when it is applied to a large number of channels. To address this challenge, we developed a new method that randomly aggregated channels into a smaller number of effective channels on which the calculation of partial coherence was based. We obtained a 'consensus' partial coherence (cPCOH) by repeating this approach for several random aggregations of channels (permutations) and only accepting those activations in time and frequency with a high enough consensus. Using model data we show that the cPCOH method effectively filters out the effect of shared inputs and performs substantially better than the pseudo-inverse. We successfully applied the cPCOH procedure to human stereotactic EEG data and demonstrated three key advantages of this method relative to alternative procedures. First, it reduces the number of false positives relative to the pseudo-inverse method. Second, it allows for titration of the amount of false positives relative to the false negatives by adjusting the consensus threshold, thus allowing the data-analyst to prioritize one over the other to meet specific analysis demands. Third, it substantially reduced the number of identified interactions compared to coherence, providing a sparser network of connections from which clear spatial patterns emerged. These patterns can serve as a starting point of further analyses that provide insight into network dynamics during cognitive processes. These advantages likely generalize to other modalities in which shared inputs introduce confounds, such as electroencephalography (EEG) and magneto-encephalography (MEG).

摘要

相干性是一种广泛用于确定记录位点对之间的频率分辨功能连接的度量,但该度量受到对该对的共享输入的混淆。为了消除共享输入,可以通过对记录的所有其他通道的谱矩阵进行条件处理来计算“部分相干性”,这涉及矩阵(伪)逆的计算。迄今为止,使用时间分辨的部分相干性来分析具有大量记录位点的颅内记录仍然是一个挑战。例如,当将伪逆方法应用于大量通道时,计算部分相干性会产生大量的假阳性。为了解决这个挑战,我们开发了一种新的方法,该方法将通道随机聚合到较少的有效通道上,然后在这些通道上计算部分相干性。我们通过对通道的几个随机聚合(置换)重复此方法并仅接受在时间和频率上具有足够高共识的激活,从而获得“共识”部分相干性(cPCOH)。使用模型数据,我们表明 cPCOH 方法有效地滤除了共享输入的影响,并且性能明显优于伪逆。我们成功地将 cPCOH 程序应用于人类立体脑电图数据,并证明了该方法相对于替代程序的三个关键优势。首先,与伪逆方法相比,它减少了假阳性的数量。其次,它允许通过调整共识阈值来调整假阳性与假阴性的比例,从而允许数据分析员根据特定的分析需求优先考虑一个或另一个。第三,与相干性相比,它大大减少了识别的相互作用的数量,从而提供了一个更稀疏的连接网络,从中可以出现清晰的空间模式。这些模式可以作为进一步分析的起点,从而深入了解认知过程中的网络动态。这些优势可能推广到其他存在共享输入引入混淆的模态,例如脑电图(EEG)和脑磁图(MEG)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验