Suppr超能文献

从脑磁图数据中进行相干源的相移不变成像(PSIICOS)。

Phase shift invariant imaging of coherent sources (PSIICOS) from MEG data.

机构信息

Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation; Computer Science Faculty, National Research University Higher School of Economics, Moscow, Russian Federation.

Computer Science Faculty, National Research University Higher School of Economics, Moscow, Russian Federation; Moscow State University of Pedagogics and Education, MEG-centre, Moscow, Russian Federation.

出版信息

Neuroimage. 2018 Dec;183:950-971. doi: 10.1016/j.neuroimage.2018.08.031. Epub 2018 Aug 22.

Abstract

Increasing evidence suggests that neuronal communication is a defining property of functionally specialized brain networks and that it is implemented through synchronization between population activities of distinct brain areas. The detection of long-range coupling in electroencephalography (EEG) and magnetoencephalography (MEG) data using conventional metrics (such as coherence or phase-locking value) is by definition contaminated by spatial leakage. Methods such as imaginary coherence, phase-lag index or orthogonalized amplitude correlations tackle spatial leakage by ignoring zero-phase interactions. Although useful, these metrics will by construction lead to false negatives in cases where true zero-phase coupling exists in the data and will underestimate interactions with phase lags in the vicinity of zero. Yet, empirically observed neuronal synchrony in invasive recordings indicates that it is not uncommon to find zero or close-to-zero phase lag between the activity profiles of coupled neuronal assemblies. Here, we introduce a novel method that allows us to mitigate the undesired spatial leakage effects and detect zero and near zero phase interactions. To this end, we propose a projection operation that operates on sensor-space cross-spectrum and suppresses the spatial leakage contribution but retains the true zero-phase interaction component. We then solve the network estimation task as a source estimation problem defined in the product space of interacting source topographies. We show how this framework provides reliable interaction detection for all phase-lag values and we thus refer to the method as Phase Shift Invariant Imaging of Coherent Sources (PSIICOS). Realistic simulations demonstrate that PSIICOS has better detector characteristics than existing interaction metrics. Finally, we illustrate the performance of PSIICOS by applying it to real MEG dataset recorded during a standard mental rotation task. Taken together, using analytical derivations, data simulations and real brain data, this study presents a novel source-space MEG/EEG connectivity method that overcomes previous limitations and for the first time allows for the estimation of true zero-phase coupling via non-invasive electrophysiological recordings.

摘要

越来越多的证据表明,神经元通讯是功能特化脑网络的一个决定性特征,它是通过不同脑区的群体活动之间的同步来实现的。使用传统指标(如相干性或锁相值)在脑电图(EEG)和脑磁图(MEG)数据中检测长程耦合,从定义上讲,会受到空间泄漏的污染。想象相干性、相位滞后指数或正交幅度相关等方法通过忽略零相位相互作用来解决空间泄漏问题。虽然这些方法很有用,但它们在数据中存在真正的零相位耦合的情况下,构造上会导致假阴性,并低估附近具有相位滞后的相互作用。然而,在有创记录中观察到的经验性神经元同步表明,在耦合神经元集合的活动谱之间找到零或接近零的相位滞后并不罕见。在这里,我们引入了一种新方法,可以减轻不必要的空间泄漏影响,并检测零和接近零的相位相互作用。为此,我们提出了一种投影操作,该操作作用于传感器空间互谱,并抑制空间泄漏贡献,但保留真实的零相位相互作用分量。然后,我们将网络估计任务作为在相互作用源拓扑的乘积空间中定义的源估计问题来解决。我们展示了该框架如何为所有相位滞后值提供可靠的相互作用检测,因此我们将该方法称为相干源的相位不变成像(PSIICOS)。现实模拟表明,PSIICOS 比现有的相互作用指标具有更好的检测特性。最后,我们通过将 PSIICOS 应用于在标准心理旋转任务期间记录的真实 MEG 数据集来说明其性能。总之,使用分析推导、数据模拟和真实脑数据,本研究提出了一种新的源空间 MEG/EEG 连通性方法,克服了以前的限制,并首次允许通过非侵入性电生理记录来估计真正的零相位耦合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验