Srinivasan Ramesh, Winter William R, Ding Jian, Nunez Paul L
Department of Cognitive Sciences, University of California, Irvine, CA 92697-5100, United States.
J Neurosci Methods. 2007 Oct 15;166(1):41-52. doi: 10.1016/j.jneumeth.2007.06.026. Epub 2007 Jul 6.
We contrasted coherence estimates obtained with EEG, Laplacian, and MEG measures of synaptic activity using simulations with head models and simultaneous recordings of EEG and MEG. EEG coherence is often used to assess functional connectivity in human cortex. However, moderate to large EEG coherence can also arise simply by the volume conduction of current through the tissues of the head. We estimated this effect using simulated brain sources and a model of head tissues (cerebrospinal fluid (CSF), skull, and scalp) derived from MRI. We found that volume conduction can elevate EEG coherence at all frequencies for moderately separated (<10 cm) electrodes; a smaller levation is observed with widely separated (>20 cm) electrodes. This volume conduction effect was readily observed in experimental EEG at high frequencies (40-50 Hz). Cortical sources generating spontaneous EEG in this band are apparently uncorrelated. In contrast, lower frequency EEG coherence appears to result from a mixture of volume conduction effects and genuine source coherence. Surface Laplacian EEG methods minimize the effect of volume conduction on coherence estimates by emphasizing sources at smaller spatial scales than unprocessed potentials (EEG). MEG coherence estimates are inflated at all frequencies by the field spread across the large distance between sources and sensors. This effect is most apparent at sensors separated by less than 15 cm in tangential directions along a surface passing through the sensors. In comparison to long-range (>20 cm) volume conduction effects in EEG, widely spaced MEG sensors show smaller field-spread effects, which is a potentially significant advantage. However, MEG coherence estimates reflect fewer sources at a smaller scale than EEG coherence and may only partially overlap EEG coherence. EEG, Laplacian, and MEG coherence emphasize different spatial scales and orientations of sources.
我们通过使用头部模型进行模拟以及同步记录脑电图(EEG)和脑磁图(MEG),对比了利用EEG、拉普拉斯变换和MEG测量突触活动所获得的相干性估计值。EEG相干性常被用于评估人类大脑皮层的功能连接性。然而,中度到高度的EEG相干性也可能仅仅是由于电流通过头部组织的容积传导而产生。我们使用模拟脑源以及从磁共振成像(MRI)得出的头部组织(脑脊液(CSF)、颅骨和头皮)模型来估计这种效应。我们发现,对于适度分开(<10厘米)的电极,容积传导会在所有频率下提高EEG相干性;对于相距较远(>20厘米)的电极,升高幅度较小。这种容积传导效应在高频(40 - 50赫兹)的实验性EEG中很容易观察到。在这个频段产生自发EEG的皮层源显然是不相关的。相比之下,低频EEG相干性似乎是容积传导效应和真正源相干性的混合结果。表面拉普拉斯变换EEG方法通过强调比未处理电位(EEG)更小空间尺度上的源,来最小化容积传导对相干性估计的影响。MEG相干性估计在所有频率下都会因源与传感器之间大距离上的场扩散而增大。这种效应在沿着穿过传感器的表面在切向方向上相距小于15厘米的传感器处最为明显。与EEG中的长程(>20厘米)容积传导效应相比,间距较大的MEG传感器显示出较小的场扩散效应,这是一个潜在的显著优势。然而,MEG相干性估计在比EEG相干性更小的尺度上反映的源更少,并且可能只与EEG相干性部分重叠。EEG、拉普拉斯变换和MEG相干性强调源的不同空间尺度和方向。