Suppr超能文献

中药生物活性成分提取的优化:三种优化模型的比较研究

Optimization of Bioactive Ingredient Extraction from Chinese Herbal Medicine : A Comparative Study of Three Optimization Models.

作者信息

Yu Li, Jin Weifeng, Li Xiaohong, Zhang Yuyan

机构信息

College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.

College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.

出版信息

Evid Based Complement Alternat Med. 2018 May 15;2018:6391414. doi: 10.1155/2018/6391414. eCollection 2018.

Abstract

The ultraviolet spectrophotometric method is often used for determining the content of glycyrrhizic acid from Chinese herbal medicine . Based on the traditional single variable approach, four extraction parameters of ammonia concentration, ethanol concentration, circumfluence time, and liquid-solid ratio are adopted as the independent extraction variables. In the present work, central composite design of four factors and five levels is applied to design the extraction experiments. Subsequently, the prediction models of response surface methodology, artificial neural networks, and genetic algorithm-artificial neural networks are developed to analyze the obtained experimental data, while the genetic algorithm is utilized to find the optimal extraction parameters for the above well-established models. It is found that the optimization of extraction technology is presented as ammonia concentration 0.595%, ethanol concentration 58.45%, return time 2.5 h, and liquid-solid ratio 11.065 : 1. Under these conditions, the model predictive value is 381.24 mg, the experimental average value is 376.46 mg, and the expectation discrepancy is 4.78 mg. For the first time, a comparative study of these three approaches is conducted for the evaluation and optimization of the effects of the extraction independent variables. Furthermore, it is demonstrated that the combinational method of genetic algorithm and artificial neural networks provides a more reliable and more accurate strategy for design and optimization of glycyrrhizic acid extraction from .

摘要

紫外分光光度法常用于测定中草药中甘草酸的含量。基于传统的单变量方法,采用氨浓度、乙醇浓度、回流时间和液固比这四个提取参数作为独立的提取变量。在本研究中,应用四因素五水平的中心复合设计来设计提取实验。随后,建立响应面法、人工神经网络和遗传算法-人工神经网络的预测模型来分析获得的实验数据,同时利用遗传算法为上述成熟模型寻找最佳提取参数。结果表明,提取工艺优化为氨浓度0.595%、乙醇浓度58.45%、回流时间2.5小时、液固比11.065∶1。在此条件下,模型预测值为381.24毫克,实验平均值为376.46毫克,预期差异为4.78毫克。首次对这三种方法进行比较研究,以评估和优化提取自变量的效果。此外,结果表明,遗传算法和人工神经网络的组合方法为甘草酸提取的设计和优化提供了一种更可靠、更准确的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a2/5977065/7d2f2ab4e4f8/ECAM2018-6391414.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验