Suppr超能文献

带电纳米颗粒对高切变力下动脉血栓形成的抑制作用

Inhibition of high shear arterial thrombosis by charged nanoparticles.

作者信息

Griffin Michael T, Zhu Yuanzheng, Liu Zixiang, Aidun Cyrus K, Ku David N

机构信息

G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

Biomicrofluidics. 2018 May 29;12(4):042210. doi: 10.1063/1.5025349. eCollection 2018 Jul.

Abstract

Platelet accumulation under high shear rates at the site of atherosclerotic plaque rupture leads to myocardial infarction and stroke. Current antiplatelet therapies remain ineffective within a large percentage of the population, while presenting significant risks for bleeding. We explore a novel way to inhibit arterial thrombus formation by biophysical means without the use of platelet inactivating drugs. Our computational multi-scale dynamics model has predicted that charged particles of a specific size may entangle von Willebrand Factor (vWF) polymers and reduce the amount of elongation at high shear rates. We tested this hypothesis experimentally for negatively charged nanoparticles (CNP) to inhibit arterial thrombus formation. CNP of a particular size and charge inhibited thrombus formation, with a 10-fold peak inhibition over control conditions of thrombotic occlusion. Particles of differing material composition, size, and charge had little effect as predicted by computational studies. Surprisingly, the dose response curve was not sigmoidal, but exhibited a peak at 1.5 CNP:vWF proteins, which was not predicted by the model. This study describes a new antithrombotic agent that may have a different mechanism of action than current pharmaceutical therapies.

摘要

在动脉粥样硬化斑块破裂部位的高剪切率下,血小板聚集会导致心肌梗死和中风。目前的抗血小板疗法在很大一部分人群中仍然无效,同时还存在显著的出血风险。我们探索了一种通过生物物理手段抑制动脉血栓形成的新方法,而不使用血小板失活药物。我们的计算多尺度动力学模型预测,特定大小的带电粒子可能会缠结血管性血友病因子(vWF)聚合物,并在高剪切率下减少伸长量。我们通过实验测试了这一假设,即带负电荷的纳米颗粒(CNP)可抑制动脉血栓形成。特定大小和电荷的CNP抑制了血栓形成,在血栓闭塞的对照条件下,抑制峰值比对照高10倍。如计算研究所预测的那样,不同材料组成、大小和电荷的颗粒几乎没有影响。令人惊讶的是,剂量反应曲线不是S形的,而是在1.5个CNP:vWF蛋白处出现峰值,这是模型未预测到的。这项研究描述了一种新的抗血栓药物,其作用机制可能与目前的药物疗法不同。

相似文献

1
Inhibition of high shear arterial thrombosis by charged nanoparticles.
Biomicrofluidics. 2018 May 29;12(4):042210. doi: 10.1063/1.5025349. eCollection 2018 Jul.
2
Negatively charged nanoparticles of multiple materials inhibit shear-induced platelet accumulation.
Nanomedicine. 2021 Jul;35:102405. doi: 10.1016/j.nano.2021.102405. Epub 2021 Apr 28.
4
Thrombus Formation at High Shear Rates.
Annu Rev Biomed Eng. 2017 Jun 21;19:415-433. doi: 10.1146/annurev-bioeng-071516-044539. Epub 2017 Apr 24.
7
Potent Thrombolytic Effect of -Acetylcysteine on Arterial Thrombi.
Circulation. 2017 Aug 15;136(7):646-660. doi: 10.1161/CIRCULATIONAHA.117.027290. Epub 2017 May 9.
10
Shear-Dependent Platelet Aggregation: Mechanisms and Therapeutic Opportunities.
Front Cardiovasc Med. 2019 Sep 20;6:141. doi: 10.3389/fcvm.2019.00141. eCollection 2019.

引用本文的文献

1
Emerging Elastic Micro-Nano Materials for Diagnosis and Treatment of Thrombosis.
Research (Wash D C). 2025 Feb 28;8:0614. doi: 10.34133/research.0614. eCollection 2025.
4
Exploring microplastic impact on whole blood clotting dynamics utilizing thromboelastography.
Front Public Health. 2023 Jul 13;11:1215817. doi: 10.3389/fpubh.2023.1215817. eCollection 2023.
6
Mathematical and Computational Modeling of Device-Induced Thrombosis.
Curr Opin Biomed Eng. 2021 Dec;20. doi: 10.1016/j.cobme.2021.100349. Epub 2021 Sep 28.
7
SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear.
Blood Adv. 2022 Apr 26;6(8):2453-2465. doi: 10.1182/bloodadvances.2021005692.
8
Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system.
Environ Pollut. 2021 Dec 15;291:118190. doi: 10.1016/j.envpol.2021.118190. Epub 2021 Sep 18.
9
Occlusive thrombosis in arteries.
APL Bioeng. 2019 Nov 19;3(4):041502. doi: 10.1063/1.5115554. eCollection 2019 Dec.
10
Shear-induced platelet aggregation: 3D-grayscale microfluidics for repeatable and localized occlusive thrombosis.
Biomicrofluidics. 2019 Oct 1;13(5):054106. doi: 10.1063/1.5113508. eCollection 2019 Sep.

本文引用的文献

1
Flow-induced elongation of von Willebrand factor precedes tension-dependent activation.
Nat Commun. 2017 Aug 23;8(1):324. doi: 10.1038/s41467-017-00230-2.
2
Shear-sensitive nanocapsule drug release for site-specific inhibition of occlusive thrombus formation.
J Thromb Haemost. 2017 May;15(5):972-982. doi: 10.1111/jth.13666. Epub 2017 Apr 9.
4
Antithrombin nanoparticles inhibit stent thrombosis in ex vivo static and flow models.
J Vasc Surg. 2016 Nov;64(5):1459-1467. doi: 10.1016/j.jvs.2015.08.086. Epub 2015 Oct 17.
5
Thrombosis: Novel nanomedical concepts of diagnosis and treatment.
World J Cardiol. 2015 Aug 26;7(8):434-41. doi: 10.4330/wjc.v7.i8.434.
6
Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model.
Toxicol In Vitro. 2015 Oct;29(7):1701-10. doi: 10.1016/j.tiv.2015.07.003. Epub 2015 Jul 3.
7
Role of high shear rate in thrombosis.
J Vasc Surg. 2015 Apr;61(4):1068-80. doi: 10.1016/j.jvs.2014.12.050. Epub 2015 Feb 19.
8
Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents.
N Engl J Med. 2014 Dec 4;371(23):2155-66. doi: 10.1056/NEJMoa1409312. Epub 2014 Nov 16.
9
Targeted drug delivery to flow-obstructed blood vessels using mechanically activated nanotherapeutics.
JAMA Neurol. 2015 Jan;72(1):119-22. doi: 10.1001/jamaneurol.2014.2886.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验