Griffin Michael T, Zhu Yuanzheng, Liu Zixiang, Aidun Cyrus K, Ku David N
G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Biomicrofluidics. 2018 May 29;12(4):042210. doi: 10.1063/1.5025349. eCollection 2018 Jul.
Platelet accumulation under high shear rates at the site of atherosclerotic plaque rupture leads to myocardial infarction and stroke. Current antiplatelet therapies remain ineffective within a large percentage of the population, while presenting significant risks for bleeding. We explore a novel way to inhibit arterial thrombus formation by biophysical means without the use of platelet inactivating drugs. Our computational multi-scale dynamics model has predicted that charged particles of a specific size may entangle von Willebrand Factor (vWF) polymers and reduce the amount of elongation at high shear rates. We tested this hypothesis experimentally for negatively charged nanoparticles (CNP) to inhibit arterial thrombus formation. CNP of a particular size and charge inhibited thrombus formation, with a 10-fold peak inhibition over control conditions of thrombotic occlusion. Particles of differing material composition, size, and charge had little effect as predicted by computational studies. Surprisingly, the dose response curve was not sigmoidal, but exhibited a peak at 1.5 CNP:vWF proteins, which was not predicted by the model. This study describes a new antithrombotic agent that may have a different mechanism of action than current pharmaceutical therapies.
在动脉粥样硬化斑块破裂部位的高剪切率下,血小板聚集会导致心肌梗死和中风。目前的抗血小板疗法在很大一部分人群中仍然无效,同时还存在显著的出血风险。我们探索了一种通过生物物理手段抑制动脉血栓形成的新方法,而不使用血小板失活药物。我们的计算多尺度动力学模型预测,特定大小的带电粒子可能会缠结血管性血友病因子(vWF)聚合物,并在高剪切率下减少伸长量。我们通过实验测试了这一假设,即带负电荷的纳米颗粒(CNP)可抑制动脉血栓形成。特定大小和电荷的CNP抑制了血栓形成,在血栓闭塞的对照条件下,抑制峰值比对照高10倍。如计算研究所预测的那样,不同材料组成、大小和电荷的颗粒几乎没有影响。令人惊讶的是,剂量反应曲线不是S形的,而是在1.5个CNP:vWF蛋白处出现峰值,这是模型未预测到的。这项研究描述了一种新的抗血栓药物,其作用机制可能与目前的药物疗法不同。