Suppr超能文献

前列腺癌中差异表达基因、临床价值及生物学途径分析

Analysis of differentially expressed genes, clinical value and biological pathways in prostate cancer.

作者信息

He Zhaohui, Tang Fucai, Lu Zechao, Huang Yucong, Lei Hanqi, Li Zhibiao, Zeng Guohua

机构信息

Department of Urology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University Guangzhou 510230, China.

First Clinical College of Guangzhou Medical University Guangzhou 510230, China.

出版信息

Am J Transl Res. 2018 May 15;10(5):1444-1456. eCollection 2018.

Abstract

The present study aimed to investigate the gene expression changes in prostate cancer (PC) and screen the hub genes and associated pathways of PC progression. The authors employed integrated analysis of GSE46602 downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases to identify 484 consensual differentially expressed genes (DEGs) in PC, when compared with adjacent normal tissue samples. Functional annotation and pathway analysis were performed. The protein-protein interaction (PPI) networks and module were constructed. RT-qPCR was used to validate the results in clinical PC samples. Survival analysis of hub genes was performed to explore their clinical value. GO analysis results revealed that DEGs were significantly enriched in negative regulation of nitrobenzene metabolic process, extracellular space and protein homodimerization activity. KEGG pathway analysis results revealed that DEGs were most significantly enriched in focal adhesion. The top 10 hub genes were identified to be hub genes from the PPI network, and the model revealed that these genes were enriched in various pathways, including neuroactive ligand-receptor interaction, p53 and glutathione metabolism signaling pathways. RT-qPCR results validated that expression levels of eight genes (PIK3R1, BIRC5, ITGB4, RRM2, TOP2A, ANXA1, LPAR1 and ITGB8) were consistent with the bioinformatics analysis. ITGB4 and RRM2 with genetic alterations exhibited association with a poorer survival rate, compared with those without alterations. These results revealed that PC-related genes and pathways have an important role in tumor expansion, metastasis and prognosis. In summary, these hub genes and related pathways may act as biomarkers or therapeutic targets for PC.

摘要

本研究旨在调查前列腺癌(PC)中的基因表达变化,并筛选PC进展的关键基因和相关通路。作者对从基因表达综合数据库(Gene Expression Omnibus)和癌症基因组图谱(The Cancer Genome Atlas)数据库下载的GSE46602进行综合分析,以鉴定与相邻正常组织样本相比,PC中484个一致的差异表达基因(DEG)。进行了功能注释和通路分析。构建了蛋白质-蛋白质相互作用(PPI)网络和模块。使用RT-qPCR在临床PC样本中验证结果。对关键基因进行生存分析以探索其临床价值。基因本体(GO)分析结果显示,DEG在硝基苯代谢过程的负调控、细胞外空间和蛋白质同二聚化活性中显著富集。京都基因与基因组百科全书(KEGG)通路分析结果显示,DEG在粘着斑中最显著富集。从PPI网络中鉴定出前10个关键基因,该模型显示这些基因在各种通路中富集,包括神经活性配体-受体相互作用、p53和谷胱甘肽代谢信号通路。RT-qPCR结果验证了8个基因(PIK3R1、BIRC5、ITGB4、RRM2、TOP2A、ANXA1、LPAR1和ITGB8)的表达水平与生物信息学分析一致。与无基因改变的患者相比,发生基因改变的ITGB4和RRM2与较差的生存率相关。这些结果表明,PC相关基因和通路在肿瘤扩展、转移和预后中具有重要作用。总之,这些关键基因和相关通路可能作为PC的生物标志物或治疗靶点。

相似文献

2
Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis.
Mol Med Rep. 2019 Aug;20(2):1259-1269. doi: 10.3892/mmr.2019.10336. Epub 2019 Jun 4.
3
Analysis of genes associated with prognosis of lung adenocarcinoma based on GEO and TCGA databases.
Medicine (Baltimore). 2020 May;99(19):e20183. doi: 10.1097/MD.0000000000020183.
5
Screening Hub Genes as Prognostic Biomarkers of Hepatocellular Carcinoma by Bioinformatics Analysis.
Cell Transplant. 2019 Dec;28(1_suppl):76S-86S. doi: 10.1177/0963689719893950. Epub 2019 Dec 11.
7
Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis.
Front Genet. 2019 Aug 2;10:695. doi: 10.3389/fgene.2019.00695. eCollection 2019.

引用本文的文献

2
Uncovering New Biomarkers for Prostate Cancer Through Proteomic and Network Analysis.
Biology (Basel). 2025 Mar 4;14(3):256. doi: 10.3390/biology14030256.
3
Exploring BIRC family genes as prognostic biomarkers and therapeutic targets in prostate cancer.
Discov Oncol. 2025 Feb 26;16(1):240. doi: 10.1007/s12672-025-02002-7.
5
Metabolomics reveals altered metabolites in cirrhotic patients with severe portal hypertension in Tibetan population.
Front Med (Lausanne). 2024 Jun 28;11:1404442. doi: 10.3389/fmed.2024.1404442. eCollection 2024.
8
A novel anoikis-related risk model predicts prognosis in patients with colorectal cancer and responses to different immunotherapy strategies.
J Cancer Res Clin Oncol. 2023 Sep;149(12):10879-10892. doi: 10.1007/s00432-023-04945-2. Epub 2023 Jun 15.

本文引用的文献

1
Prostate Cancer.
Urol Clin North Am. 2017 Nov;44(4):xv-xvi. doi: 10.1016/j.ucl.2017.08.001.
2
Prevention of Prostate Cancer Morbidity and Mortality: Primary Prevention and Early Detection.
Med Clin North Am. 2017 Jul;101(4):787-806. doi: 10.1016/j.mcna.2017.03.009.
3
Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness.
Cell Adh Migr. 2017 May 4;11(3):247-260. doi: 10.1080/19336918.2016.1259056. Epub 2016 Nov 11.
5
Biomarkers in localized prostate cancer.
Future Oncol. 2016 Feb;12(3):399-411. doi: 10.2217/fon.15.318. Epub 2016 Jan 15.
6
Cancer statistics, 2016.
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30. doi: 10.3322/caac.21332. Epub 2016 Jan 7.
7
The PI3K regulatory subunit gene PIK3R1 is under direct control of androgens and repressed in prostate cancer cells.
Oncoscience. 2015 Sep 14;2(9):755-64. doi: 10.18632/oncoscience.243. eCollection 2015.
8
Association of serum EPCA-2 level with prostate cancer in Chinese Han population.
Int J Clin Exp Pathol. 2015 Aug 1;8(8):9397-403. eCollection 2015.
9
Generalized empirical Bayesian methods for discovery of differential data in high-throughput biology.
Bioinformatics. 2016 Jan 15;32(2):195-202. doi: 10.1093/bioinformatics/btv569. Epub 2015 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验