Suppr超能文献

疲劳测试下颧骨-上颌骨复合体骨折用解剖型薄钛网板的结构优化。

Anatomical Thin Titanium Mesh Plate Structural Optimization for Zygomatic-Maxillary Complex Fracture under Fatigue Testing.

机构信息

Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan.

Division of Research and Analysis, Food and Drug Administration, Taipei, Taiwan.

出版信息

Biomed Res Int. 2018 May 20;2018:9398647. doi: 10.1155/2018/9398647. eCollection 2018.

Abstract

This study performs a structural optimization of anatomical thin titanium mesh (ATTM) plate and optimal designed ATTM plate fabricated using additive manufacturing (AM) to verify its stabilization under fatigue testing. Finite element (FE) analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement) and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.

摘要

本研究对解剖型薄钛网(ATT)板进行结构优化,并采用增材制造(AM)对优化设计的 ATT 板进行制造,以验证其在疲劳测试下的稳定性。有限元(FE)分析用于模拟常规 ATT 板的结构抗弯阻力。田口法用于确定每个设计因素在控制挠度方面的重要性,并确定设计因素的最佳组合。采用 AM 制造与患者面部轮廓匹配的最佳设计 ATT 板,并将其应用于 ZMC 粉碎性骨折,以评估疲劳测试下上颌骨的静息最大微移/应变。田口分析发现,ATT 板需要设计的内孔距离为 0.9mm,内孔直径为 1mm,板厚为 0.8mm,板高为 10mm。设计板厚度因素主要主导抗弯阻力,重要性高达 78%。上颌骨的平均微移(位移)和应变表明,使用微型板固定 ZMC 骨折的固定效果明显高于使用 AM 最佳设计 ATT 板的固定效果。本研究得出结论,通过结合 FE 和田口分析,可以获得具有足够强度抵抗弯曲效应的最佳设计 ATT 板。采用 AM 制造的与患者面部轮廓匹配的最佳设计 ATT 板为 ZMC 粉碎性骨折骨段提供了更好的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6b/5985082/ac8c490c681c/BMRI2018-9398647.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验