Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, USA.
US Army Natick Soldier RD&E Center, Warfighter Directorate, Natick, MA, USA.
J Sci Food Agric. 2019 Jan 15;99(1):368-378. doi: 10.1002/jsfa.9198. Epub 2018 Jul 30.
To utilize the potential of non-thermal plasma technologies for food safety control and sanitation, the inactivation mechanisms of Bacillus amyloliquefaciens spores by non-thermal plasma of ambient air (NTP-AA) were investigated using scanning electron microscopy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy with chemometric analysis and proton nuclear magnetic resonance spectroscopy, aiming to probe both the morphological and biochemical changes occurring in spores during the kinetic inactivation process.
Kinetic analysis indicates that there is no intrinsic D-value (i.e. time required to inactivate 90% of the spores) in spore inactivation by NTP-AA because we observed non-linear (biphasic) inactivation kinetics and, in addition, the inactivation rate depended on the initial spore concentration and how the spores were exposed to the reactive species in the NTP-AA. The presence of suitable amount of water in the NTP-AA field accelerates spore inactivation.
Progressive erosion of spore surface by NTP-AA with ensuing or concomitant biochemical damage, which includes the alteration of structural proteins, internal lipids and the loss of dipicolinic acid content from the spore core, represent the main mechanisms of inactivation, and there is evidence that reactive NTP-AA species could penetrate the cortex and reach the core of spores to cause damage. © 2018 Society of Chemical Industry.
为了利用非热等离子体技术在食品安全控制和卫生方面的潜力,本研究采用扫描电子显微镜、原子力显微镜、衰减全反射傅里叶变换红外光谱结合化学计量学分析和质子核磁共振波谱,研究了常压室温等离子体(NTP-AA)对解淀粉芽孢杆菌孢子的灭活机制,旨在探究动力学灭活过程中孢子形态和生化变化。
动力学分析表明,NTP-AA 对孢子的灭活不存在固有 D 值(即灭活 90%孢子所需的时间),因为我们观察到了非线性(双相)灭活动力学,此外,灭活速率取决于初始孢子浓度以及孢子如何暴露于 NTP-AA 中的活性物质。NTP-AA 场中适量的水的存在会加速孢子的灭活。
NTP-AA 对孢子表面的逐渐侵蚀,随之而来的生化损伤,包括结构蛋白、内部脂质的改变以及孢子核心中二吡啶羧酸含量的损失,是主要的灭活机制,有证据表明,活性 NTP-AA 物种可以穿透皮层并到达孢子的核心造成损伤。© 2018 英国化学学会。