Suppr超能文献

使用多期CT的快速傅里叶变换分析鉴别实性、不含肉眼可见脂肪、强化的肾肿块。

Differentiating solid, non-macroscopic fat containing, enhancing renal masses using fast Fourier transform analysis of multiphase CT.

作者信息

Varghese Bino A, Chen Frank, Hwang Darryl H, Cen Steven Y, Gill Inderbir S, Duddalwar Vinay A

机构信息

1 Department of Radiology, University of Southern California , Los Angeles, CA , USA.

2 Institute of Urology, University of Southern California , Los Angeles, CA , USA.

出版信息

Br J Radiol. 2018 Sep;91(1089):20170789. doi: 10.1259/bjr.20170789. Epub 2018 Jun 21.

Abstract

OBJECTIVE

To test the feasibility of two-dimensional fast Fourier transforms (FFT)-based imaging metrics in differentiating solid, non-macroscopic fat containing, enhancing renal masses using contrast-enhanced CT images. We quantify image-based intratumoral textural variations (indicator of tumor heterogeneity) using frequency-based (FFT) imaging metrics.

METHODS

In this Institutional Review Board approved, Health Insurance Portability and Accountability Act -compliant, retrospective case-control study, we evaluated 156 patients with predominantly solid, non-macroscopic fat containing, enhancing renal masses identified between June 2009 and June 2016. 110 cases (70%) were malignant RCC, including clear cell, papillary and chromophobe subtypes and, 46 cases (30%) were benign renal masses: oncocytoma and lipid-poor angiomyolipoma. Whole lesions were manually segmented using Synapse 3D (Fujifilm, CT) and co-registered from the multiphase CT acquisitions for each tumor. Pathological diagnosis of all tumors was obtained following surgical resection. Matlab function, FFT2 was used to perform the image to frequency transformation.

RESULTS

A Wilcoxon rank sum test showed that FFT-based metrics were significantly (p < 0.005) different between 1. benign vs malignant renal masses, 2. oncocytoma vs clear cell renal cell carcinoma and 3. oncocytoma vs lipid-poor angiomyolipoma. Receiver operator characteristics analysis revealed reasonable discrimination (area under the curve >0.7, p < 0.05) within these three groups of comparisons.

CONCLUSION

In combination with other metrics, FFT-metrics may improve patient management and potentially help differentiate other renal tumors. Advances in knowledge: We report for the first time that FFT-based metrics can differentiate between some solid, non-macroscopic fat containing, enhancing renal masses using their contrast-enhanced CT data.

摘要

目的

利用对比增强CT图像,测试基于二维快速傅里叶变换(FFT)的成像指标在鉴别实性、不含肉眼可见脂肪、强化的肾肿块中的可行性。我们使用基于频率(FFT)的成像指标来量化基于图像的肿瘤内纹理变化(肿瘤异质性指标)。

方法

在这项经机构审查委员会批准、符合《健康保险流通与责任法案》的回顾性病例对照研究中,我们评估了2009年6月至2016年6月期间确诊的156例主要为实性、不含肉眼可见脂肪、强化的肾肿块患者。110例(70%)为恶性肾细胞癌,包括透明细胞、乳头状和嫌色细胞亚型,46例(30%)为良性肾肿块:嗜酸性细胞瘤和低脂血管平滑肌脂肪瘤。使用Synapse 3D(富士胶片,CT)手动分割整个病变,并从每个肿瘤的多期CT采集中进行配准。所有肿瘤均在手术切除后获得病理诊断。使用Matlab函数FFT2进行图像到频率的转换。

结果

Wilcoxon秩和检验显示,基于FFT的指标在以下三组之间存在显著差异(p < 0.005):1. 良性与恶性肾肿块;2. 嗜酸性细胞瘤与透明细胞肾细胞癌;3. 嗜酸性细胞瘤与低脂血管平滑肌脂肪瘤。受试者工作特征分析显示,在这三组比较中具有合理的区分度(曲线下面积>0.7,p < 0.05)。

结论

与其他指标相结合,FFT指标可能改善患者管理,并有可能帮助鉴别其他肾肿瘤。知识进展:我们首次报告,基于FFT的指标可以利用其对比增强CT数据区分一些实性、不含肉眼可见脂肪、强化的肾肿块。

相似文献

3
Deep learning based classification of solid lipid-poor contrast enhancing renal masses using contrast enhanced CT.
Br J Radiol. 2020 Jul;93(1111):20200002. doi: 10.1259/bjr.20200002. Epub 2020 May 11.
5
Quantitative Contour Analysis as an Image-based Discriminator Between Benign and Malignant Renal Tumors.
Urology. 2018 Apr;114:121-127. doi: 10.1016/j.urology.2017.12.018. Epub 2018 Jan 2.
7
Subtype Differentiation of Small (≤ 4 cm) Solid Renal Mass Using Volumetric Histogram Analysis of DWI at 3-T MRI.
AJR Am J Roentgenol. 2018 Sep;211(3):614-623. doi: 10.2214/AJR.17.19278. Epub 2018 May 29.
8
Juxtatumoral perinephric fat analysis in clear cell renal cell carcinoma.
Abdom Radiol (NY). 2019 Apr;44(4):1470-1480. doi: 10.1007/s00261-018-1848-x.

引用本文的文献

1
Spatial assessments in texture analysis: what the radiologist needs to know.
Front Radiol. 2023 Aug 24;3:1240544. doi: 10.3389/fradi.2023.1240544. eCollection 2023.
2
Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review.
Ther Adv Urol. 2023 Apr 17;15:17562872231164803. doi: 10.1177/17562872231164803. eCollection 2023 Jan-Dec.
3
Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects.
Int J Mol Sci. 2023 Feb 27;24(5):4615. doi: 10.3390/ijms24054615.
4
Multiple angiomyolipomas mimicking metastases of concurrent clear cell renal cell carcinoma.
IJU Case Rep. 2019 Mar 31;2(3):162-165. doi: 10.1002/iju5.12069. eCollection 2019 May.
5
Reliability of CT-based texture features: Phantom study.
J Appl Clin Med Phys. 2019 Aug;20(8):155-163. doi: 10.1002/acm2.12666. Epub 2019 Jun 20.

本文引用的文献

1
Quantitative Contour Analysis as an Image-based Discriminator Between Benign and Malignant Renal Tumors.
Urology. 2018 Apr;114:121-127. doi: 10.1016/j.urology.2017.12.018. Epub 2018 Jan 2.
2
Clear Cell Renal Cell Carcinoma: Identifying the Loss of the Y Chromosome on Multiphasic MDCT.
AJR Am J Roentgenol. 2017 Aug;209(2):333-338. doi: 10.2214/AJR.16.17010. Epub 2017 May 15.
3
Texture analysis as a radiomic marker for differentiating renal tumors.
Abdom Radiol (NY). 2017 Oct;42(10):2470-2478. doi: 10.1007/s00261-017-1144-1.
6
Subjective and objective heterogeneity scores for differentiating small renal masses using contrast-enhanced CT.
Abdom Radiol (NY). 2017 May;42(5):1485-1492. doi: 10.1007/s00261-016-1014-2.
8
Magnetic Resonance Imaging as a Biomarker for Renal Cell Carcinoma.
Dis Markers. 2015;2015:648495. doi: 10.1155/2015/648495. Epub 2015 Nov 1.
9
Differentiation of subtypes of renal cell carcinoma with contrast-enhanced ultrasonography.
Clin Hemorheol Microcirc. 2016 Oct 5;63(4):361-371. doi: 10.3233/CH-152024.
10
Solid Renal Cell Carcinoma Measuring Water Attenuation (-10 to 20 HU) on Unenhanced CT.
AJR Am J Roentgenol. 2015 Dec;205(6):1215-21. doi: 10.2214/AJR.15.14554.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验