文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肾癌管理中的放射基因组学——当前证据和未来展望。

Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects.

机构信息

Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy.

Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy.

出版信息

Int J Mol Sci. 2023 Feb 27;24(5):4615. doi: 10.3390/ijms24054615.


DOI:10.3390/ijms24054615
PMID:36902045
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10003020/
Abstract

Renal cancer management is challenging from diagnosis to treatment and follow-up. In cases of small renal masses and cystic lesions the differential diagnosis of benign or malignant tissues has potential pitfalls when imaging or even renal biopsy is applied. The recent artificial intelligence, imaging techniques, and genomics advancements have the ability to help clinicians set the stratification risk, treatment selection, follow-up strategy, and prognosis of the disease. The combination of radiomics features and genomics data has achieved good results but is currently limited by the retrospective design and the small number of patients included in clinical trials. The road ahead for radiogenomics is open to new, well-designed prospective studies, with large cohorts of patients required to validate previously obtained results and enter clinical practice.

摘要

肾癌的管理从诊断到治疗和随访都具有挑战性。在小的肾肿块和囊性病变的情况下,即使应用成像或甚至肾活检,对良性或恶性组织的鉴别诊断也存在潜在的陷阱。最近的人工智能、成像技术和基因组学的进步有能力帮助临床医生确定疾病的分层风险、治疗选择、随访策略和预后。放射组学特征和基因组学数据的结合已经取得了很好的结果,但目前受到回顾性设计和临床试验中纳入的患者数量少的限制。放射基因组学的未来是开放的,需要进行新的、精心设计的前瞻性研究,需要大量的患者队列来验证以前获得的结果并将其纳入临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66ed/10003020/9dda4300e380/ijms-24-04615-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66ed/10003020/9dda4300e380/ijms-24-04615-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66ed/10003020/9dda4300e380/ijms-24-04615-g001.jpg

相似文献

[1]
Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects.

Int J Mol Sci. 2023-2-27

[2]
Differentiation of benign from malignant solid renal lesions with MRI-based radiomics and machine learning.

Abdom Radiol (NY). 2022-8

[3]
Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT.

Abdom Radiol (NY). 2019-6

[4]
Differentiation of benign from malignant solid renal lesions using CT-based radiomics and machine learning: comparison with radiologist interpretation.

Abdom Radiol (NY). 2023-2

[5]
Differentiating Benign From Malignant Cystic Renal Masses: A Feasibility Study of Computed Tomography Texture-Based Machine Learning Algorithms.

J Comput Assist Tomogr. 2023

[6]
Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization.

Int J Mol Sci. 2021-9-15

[7]
Novel Imaging Methods for Renal Mass Characterization: A Collaborative Review.

Eur Urol. 2022-5

[8]
Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma.

Aging (Albany NY). 2021-3-26

[9]
Artificial intelligence-based MRI radiomics and radiogenomics in glioma.

Cancer Imaging. 2024-3-14

[10]
Radiogenomics in prostate cancer evaluation.

Curr Opin Urol. 2021-7-1

引用本文的文献

[1]
Machine learning-assisted radiogenomic analysis for miR-15a expression prediction in renal cell carcinoma.

BMC Cancer. 2025-8-20

[2]
Computed tomography-based radiomics modeling to predict patient overall survival in cervical cancer with intensity-modulated radiotherapy combined with concurrent chemotherapy.

J Int Med Res. 2025-3

[3]
Intratumoral and peritumoral radiomics using multi-phase contrast-enhanced CT for diagnosis of renal oncocytoma and chromophobe renal cell carcinoma: a multicenter retrospective study.

Front Oncol. 2025-2-5

[4]
Deep transfer learning hybrid techniques for precision in breast cancer tumor histopathology classification.

Health Inf Sci Syst. 2025-2-11

[5]
Radiogenomics Pilot Study: Association Between Radiomics and Single Nucleotide Polymorphism-Based Microarray Copy Number Variation in Diagnosing Renal Oncocytoma and Chromophobe Renal Cell Carcinoma.

Int J Mol Sci. 2024-11-21

[6]
Bridging the Gap Between Imaging and Molecular Characterization: Current Understanding of Radiomics and Radiogenomics in Hepatocellular Carcinoma.

J Hepatocell Carcinoma. 2024-11-27

[7]
Screening of differential gene expression patterns through survival analysis for diagnosis, prognosis and therapies of clear cell renal cell carcinoma.

PLoS One. 2024

[8]
Empowering health care consumers & understanding patients' perspectives on AI integration in oncology and surgery: A perspective.

Health Sci Rep. 2024-7-23

[9]
Deep Learning of radiology-genomics integration for computational oncology: A mini review.

Comput Struct Biotechnol J. 2024-6-20

[10]
A 23-year bibliometric analysis of the development of global research on hereditary renal carcinoma.

Front Oncol. 2024-6-3

本文引用的文献

[1]
2022 WUOF/SIU International Consultation on Urological Diseases: Genetics and Tumor Microenvironment of Renal Cell Carcinoma.

Soc Int Urol J. 2022-11

[2]
Renal Cell Carcinoma as a Metabolic Disease: An Update on Main Pathways, Potential Biomarkers, and Therapeutic Targets.

Int J Mol Sci. 2022-11-18

[3]
MUC1 Tissue Expression and Its Soluble Form CA15-3 Identify a Clear Cell Renal Cell Carcinoma with Distinct Metabolic Profile and Poor Clinical Outcome.

Int J Mol Sci. 2022-11-12

[4]
A radiogenomics biomarker based on immunological heterogeneity for non-invasive prognosis of renal clear cell carcinoma.

Front Immunol. 2022

[5]
Papillary Renal Neoplasm With Reverse Polarity: A Clinical, Pathologic, and Molecular Study of 8 Renal Tumors From a Single Institution.

Arch Pathol Lab Med. 2023-6-1

[6]
The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours.

Eur Urol. 2022-11

[7]
Radiomics in prostate cancer: an up-to-date review.

Ther Adv Urol. 2022-7-4

[8]
Micro-RNAs Predict Response to Systemic Treatments in Metastatic Renal Cell Carcinoma Patients: Results from a Systematic Review of the Literature.

Biomedicines. 2022-5-31

[9]
Differentiation of benign from malignant solid renal lesions with MRI-based radiomics and machine learning.

Abdom Radiol (NY). 2022-8

[10]
MRI-Based Radiomics and Urine Creatinine for the Differentiation of Renal Angiomyolipoma With Minimal Fat From Renal Cell Carcinoma: A Preliminary Study.

Front Oncol. 2022-5-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索