Suppr超能文献

用扫描隧道显微镜和光谱学探测界面水的结构与动力学

Probing the Structure and Dynamics of Interfacial Water with Scanning Tunneling Microscopy and Spectroscopy.

作者信息

Guo Jing, You Sifan, Wang Zhichang, Peng Jinbo, Ma Runze, Jiang Ying

机构信息

International Center for Quantum Materials, School of Physics, Peking University.

International Center for Quantum Materials, School of Physics, Peking University; Collaborative Innovation Center of Quantum Matter;

出版信息

J Vis Exp. 2018 May 27(135):57193. doi: 10.3791/57193.

Abstract

Water/solid interfaces are ubiquitous and play a key role in many environmental, biophysical, and technological processes. Resolving the internal structure and probing the hydrogen-bond (H-bond) dynamics of the water molecules adsorbed on solid surfaces are fundamental issues of water science, which remains a great challenge owing to the light mass and small size of hydrogen. Scanning tunneling microscopy (STM) is a promising tool for attacking these problems, thanks to its capabilities of sub-Ångström spatial resolution, single-bond vibrational sensitivity, and atomic/molecular manipulation. The designed experimental system consists of a Cl-terminated tip and a sample fabricated by dosing water molecules in situ onto the Au(111)-supported NaCl(001) surfaces. The insulating NaCl films electronically decouple the water from the metal substrates, so the intrinsic frontier orbitals of water molecules are preserved. The Cl-tip facilitates the manipulation of the single water molecules, as well as gating the orbitals of water to the proximity of Fermi level (EF) via tip-water coupling. This paper outlines the detailed methods of submolecular resolution imaging, molecular/atomic manipulation, and single-bond vibrational spectroscopy of interfacial water. These studies open up a new route for investigating the H-bonded systems at the atomic scale.

摘要

水/固界面无处不在,在许多环境、生物物理和技术过程中发挥着关键作用。解析吸附在固体表面的水分子的内部结构并探测其氢键(H键)动力学是水科学的基本问题,由于氢的质量轻、尺寸小,这仍然是一个巨大的挑战。扫描隧道显微镜(STM)是解决这些问题的一种很有前景的工具,这得益于其亚埃级的空间分辨率、单键振动灵敏度以及原子/分子操纵能力。所设计的实验系统由一个Cl端接的针尖和一个通过在Au(111)支撑的NaCl(001)表面原位注入水分子制备的样品组成。绝缘的NaCl薄膜使水与金属基底在电子上解耦,因此水分子的本征前沿轨道得以保留。Cl针尖有助于对单个水分子进行操纵,以及通过针尖-水耦合将水的轨道选通到费米能级(EF)附近。本文概述了界面水的亚分子分辨率成像、分子/原子操纵和单键振动光谱的详细方法。这些研究为在原子尺度上研究氢键系统开辟了一条新途径。

相似文献

3
Scanning tunneling spectroscopy.扫描隧道谱。
Annu Rev Anal Chem (Palo Alto Calif). 2009;2:37-55. doi: 10.1146/annurev-anchem-060908-155213.

引用本文的文献

1
Controlled Surface Modification to Revive Shallow NV Centers.控制表面修饰以恢复浅层 NV 中心。
Nano Lett. 2023 Apr 12;23(7):2563-2569. doi: 10.1021/acs.nanolett.2c04733. Epub 2023 Mar 16.

本文引用的文献

1
Nanoscale nuclear magnetic resonance with chemical resolution.纳米尺度核磁共振的化学分辨率。
Science. 2017 Jul 7;357(6346):67-71. doi: 10.1126/science.aam8697. Epub 2017 Jun 1.
4
How Does Water Wet a Surface?水是如何润湿表面的?
Acc Chem Res. 2015 Oct 20;48(10):2783-90. doi: 10.1021/acs.accounts.5b00214. Epub 2015 Sep 29.
8
Formation of hexagonal and cubic ice during low-temperature growth.低温生长过程中六方和立方冰的形成。
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11757-62. doi: 10.1073/pnas.1303001110. Epub 2013 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验