Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany.
3rd Institute of Physics and Research Center SCoPE, University of Stuttgart, 70049 Stuttgart, Germany.
Nano Lett. 2023 Apr 12;23(7):2563-2569. doi: 10.1021/acs.nanolett.2c04733. Epub 2023 Mar 16.
Near-surface negatively charged nitrogen vacancy (NV) centers hold excellent promise for nanoscale magnetic imaging and quantum sensing. However, they often experience charge-state instabilities, leading to strongly reduced fluorescence and NV coherence time, which negatively impact magnetic imaging sensitivity. This occurs even more severely at 4 K and ultrahigh vacuum (UHV, = 2 × 10 mbar). We demonstrate that adsorption of HO on the diamond surface allows the partial recovery of the shallow NV sensors. Combining these with band-bending calculations, we conclude that controlled surface treatments are essential for implementing NV-based quantum sensing protocols under cryogenic UHV conditions.
表面附近带负电荷的氮空位 (NV) 中心在纳米级磁成像和量子传感方面具有巨大的应用潜力。然而,它们通常会经历电荷态不稳定性,导致荧光和 NV 相干时间大大减少,从而降低磁成像的灵敏度。这种情况在 4 K 和超高真空 (UHV, = 2 × 10 mbar) 下更为严重。我们证明了在钻石表面吸附 HO 可以使 NV 传感器的浅态部分恢复。结合能带弯曲计算,我们得出结论,在低温 UHV 条件下实施基于 NV 的量子传感协议,表面的控制处理是必不可少的。