Division of Pediatric Neurology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
Epilepsia. 2018 Jul;59(7):1455-1468. doi: 10.1111/epi.14441. Epub 2018 Jun 11.
Na /K -ATPase dysfunction, primary (mutation) or secondary (energy crisis, neurodegenerative disease) increases neuronal excitability in the brain. To evaluate the mechanisms underlying such increased excitability we studied mice carrying the D801N mutation, the most common mutation causing human disease, specifically alternating hemiplegia of childhood (AHC) including epilepsy. Because the gene is expressed in all neurons, particularly γ-aminobutyric acid (GABA)ergic interneurons, we hypothesized that the pathophysiology would involve both pyramidal cells and interneurons and that fast-spiking interneurons, which have increased firing rates, would be most vulnerable.
We performed extracellular recordings, as well as whole-cell patch clamp recordings from pyramidal cells and interneurons, in the CA1 region on hippocampal slices. We also performed immunohistochemistry from hippocampal sections to count CA1 pyramidal cells as well as parvalbumin-positive interneurons. In addition, we performed video-electroencephalography (EEG) recordings from the dorsal hippocampal CA1 region.
We observed that juvenile knock-in mice carrying the above mutation reproduce the human phenotype of AHC. We then demonstrated in the CA1 region of these mice the following findings as compared to wild type: (1) Increased number of spikes evoked by electrical stimulation of Schaffer collaterals; (2) equalization by bicuculline of the number of spikes induced by Schaffer collateral stimulation; (3) reduced miniature, spontaneous, and evoked inhibitory postsynaptic currents, but no change in excitatory postsynaptic currents; (4) robust action potential frequency adaptation in response to depolarizing current injection in CA1 fast-spiking interneurons; and (5) no change in the number of pyramidal cells, but reduced number of parvalbumin positive interneurons.
Our data indicate that, in our genetic model of Atp1α3 mutation, there is increased excitability and marked dysfunction in GABAergic inhibition. This supports the performance of further investigations to determine if selective expression of the mutation in GABAergic and or glutamatergic neurons is necessary and sufficient to result in the behavioral phenotype.
钠/钾-ATP 酶功能障碍,原发性(突变)或继发性(能量危机、神经退行性疾病)可增加大脑中的神经元兴奋性。为了评估这种兴奋性增加的机制,我们研究了携带 D801N 突变的小鼠,该突变是导致人类疾病的最常见突变,特别是包括癫痫在内的儿童交替性偏瘫(AHC)。由于该基因在所有神经元中表达,特别是γ-氨基丁酸(GABA)能中间神经元,我们假设病理生理学将涉及锥体细胞和中间神经元,并且具有更高放电率的快速放电中间神经元将最易受影响。
我们在海马切片的 CA1 区进行了细胞外记录,以及来自锥体细胞和中间神经元的全细胞膜片钳记录。我们还从海马切片中进行了免疫组织化学计数 CA1 锥体细胞和 parvalbumin 阳性中间神经元。此外,我们还进行了来自背侧海马 CA1 区的视频脑电图(EEG)记录。
我们观察到携带上述突变的幼年基因敲入小鼠重现了 AHC 的人类表型。然后,我们与野生型相比,在这些小鼠的 CA1 区观察到以下发现:(1)Schaffer 侧支电刺激引起的尖峰数量增加;(2)用 Bicuculline 平衡 Schaffer 侧支刺激引起的尖峰数量;(3)减少微小、自发和诱发的抑制性突触后电流,但兴奋性突触后电流没有变化;(4)CA1 快速放电中间神经元对去极化电流注入的动作电位频率适应;(5)锥体细胞数量无变化,但 parvalbumin 阳性中间神经元数量减少。
我们的数据表明,在我们的 Atp1α3 突变基因模型中,存在兴奋性增加和 GABA 能抑制的显著功能障碍。这支持了进一步研究的开展,以确定在 GABA 能和/或谷氨酸能神经元中选择性表达突变是否是导致行为表型所必需和充分的。