Division of Materials and Environmental Chemistry , Stockholm University , Stockholm , 10691 , Sweden.
CNR-Institute of Chemistry of Organometallic Compounds , Area della Ricerca, Via Moruzzi 1 , 56124 Pisa , Italy.
ACS Nano. 2018 Jul 24;12(7):7028-7038. doi: 10.1021/acsnano.8b02734. Epub 2018 Jun 12.
The self-assembly of nanocellulose and graphene oxide into highly porous biohybrid materials has inspired the design and synthesis of multifunctional membranes for removing water pollutants. The mechanisms of self-assembly, metal ion capture, and cluster formation on the biohybrids at the nano- and molecular scales are quite complex. Their elucidation requires evidence from the synergistic combination of experimental data and computational models. The AFM-based microscopy studies of (2,2,6,6-tetramethylpiperidine-1-oxylradical)-mediated oxidized cellulose nanofibers (TOCNFs), graphene oxide (GO), and their biohybrid membranes provide strong, direct evidence of self-assembly; small GO nanoparticles first attach and accumulate along a single TOCNF fiber, while the long, flexible TOCNF filaments wrap around the flat, wide GO planes, thus forming an amorphous and porous biohybrid network. The layered structure of the TOCNFs and GO membrane, derived from the self-assembly and its surface properties before and after the adsorption of Cu(II), is investigated by advanced microscopy techniques and is further clarified by the ReaxFF molecular dynamics (MD) simulations. The dynamics of the Cu(II)-ion capture by the TOCNF and GO membranes in solution and the ion cluster formation during drying are confirmed by the MD simulations. The results of this multidisciplinary investigation move the research one step forward by disclosing specific aspects of the self-assembly behavior of biospecies and suggesting effective design strategies to control the pore size and robust materials for industrial applications.
纳米纤维素和氧化石墨烯自组装成高度多孔的生物杂交材料,激发了设计和合成用于去除水污染物的多功能膜。在纳米和分子尺度上,生物杂交材料的自组装、金属离子捕获和团簇形成的机制非常复杂。它们的阐明需要来自实验数据和计算模型协同组合的证据。基于原子力显微镜的(2,2,6,6-四甲基哌啶-1-氧自由基)介导的氧化纤维素纳米纤维(TOCNF)、氧化石墨烯(GO)及其生物杂交膜的显微镜研究为自组装提供了有力的直接证据;小的 GO 纳米颗粒首先附着并沿单个 TOCNF 纤维积累,而长而灵活的 TOCNF 细丝缠绕在平坦、宽阔的 GO 平面上,从而形成非晶态和多孔的生物杂交网络。通过先进的显微镜技术研究了 TOCNF 和 GO 膜的层状结构,以及在吸附 Cu(II)前后的自组装和表面特性,并通过 ReaxFF 分子动力学(MD)模拟进一步阐明。MD 模拟证实了 TOCNF 和 GO 膜在溶液中捕获 Cu(II)离子和在干燥过程中形成离子团簇的动力学。这项多学科研究的结果通过揭示生物种的自组装行为的具体方面,并提出控制孔径和用于工业应用的稳健材料的有效设计策略,将研究向前推进了一步。