State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
Co-Innovation Center for Textile Industry, Donghua University, Shanghai 201620, P. R. China.
ACS Appl Mater Interfaces. 2021 May 19;13(19):22416-22425. doi: 10.1021/acsami.1c03192. Epub 2021 May 5.
The large osmotic energy between river water and seawater is an inexhaustible blue energy source; however, the complicated manufacturing methods used for ion-exchange devices hinder the development of reverse electrodialysis (RED). Here, we use a wet-spinning method to continuously spin meter-scale 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) nanofiber filaments, which are then used to construct nanochannels for osmotic energy conversion. These are then used to build a nacre-like structure by adding graphene oxide (GO), which provides narrow nanochannels in one-dimensional and two-dimensional nanofluid systems for rapid ion transport. With a 50-fold concentration gradient, the nanochannels in the fibers generate electricity of 0.35 W m, with an ionic mobility of 0.94 and an energy conversion efficiency of 38%. The assembly of GO and TOBC results in a high power density of 0.53 W m using artificial seawater and river water. The RED device fabricated from TOBC/GO fibers maintains a stable power density for 15 days. This research proposes a simple method to reduce the size of nanochannels to improve the ionic conductivity, ionic selectivity, and power density of cellulose-based nanofibers to increase the possibility of their application for the conversion of osmotic energy to electrical energy.
河水与海水之间巨大的渗透压能提供取之不竭的蓝色能源;然而,离子交换器件的复杂制造方法阻碍了反向电渗析(RED)的发展。在这里,我们使用湿法纺丝的方法连续纺制了米级 2,2,6,6-四甲基哌啶-1-氧基(TEMPO)氧化细菌纤维素(TOBC)纳米纤维长丝,然后将其用于构建用于渗透能转换的纳米通道。接着,通过添加氧化石墨烯(GO)构建类珍珠母结构,在一维和二维纳米流体系统中提供狭窄的纳米通道,以实现快速离子传输。在 50 倍浓度梯度下,纤维中的纳米通道可产生 0.35 W m 的电量,离子迁移率为 0.94,能量转换效率为 38%。使用人工海水和河水组装的 GO 和 TOBC 产生的电力量密度为 0.53 W m。由 TOBC/GO 纤维制成的 RED 装置可稳定运行 15 天。该研究提出了一种减小纳米通道尺寸的简单方法,以提高纤维素基纳米纤维的离子电导率、离子选择性和功率密度,从而增加其将渗透能转化为电能的可能性。