Suppr超能文献

TEMPO 氧化细菌纤维素纳米纤维/氧化石墨烯纤维用于渗透能转换。

TEMPO-Oxidized Bacterial Cellulose Nanofibers/Graphene Oxide Fibers for Osmotic Energy Conversion.

机构信息

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.

Co-Innovation Center for Textile Industry, Donghua University, Shanghai 201620, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2021 May 19;13(19):22416-22425. doi: 10.1021/acsami.1c03192. Epub 2021 May 5.

Abstract

The large osmotic energy between river water and seawater is an inexhaustible blue energy source; however, the complicated manufacturing methods used for ion-exchange devices hinder the development of reverse electrodialysis (RED). Here, we use a wet-spinning method to continuously spin meter-scale 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) nanofiber filaments, which are then used to construct nanochannels for osmotic energy conversion. These are then used to build a nacre-like structure by adding graphene oxide (GO), which provides narrow nanochannels in one-dimensional and two-dimensional nanofluid systems for rapid ion transport. With a 50-fold concentration gradient, the nanochannels in the fibers generate electricity of 0.35 W m, with an ionic mobility of 0.94 and an energy conversion efficiency of 38%. The assembly of GO and TOBC results in a high power density of 0.53 W m using artificial seawater and river water. The RED device fabricated from TOBC/GO fibers maintains a stable power density for 15 days. This research proposes a simple method to reduce the size of nanochannels to improve the ionic conductivity, ionic selectivity, and power density of cellulose-based nanofibers to increase the possibility of their application for the conversion of osmotic energy to electrical energy.

摘要

河水与海水之间巨大的渗透压能提供取之不竭的蓝色能源;然而,离子交换器件的复杂制造方法阻碍了反向电渗析(RED)的发展。在这里,我们使用湿法纺丝的方法连续纺制了米级 2,2,6,6-四甲基哌啶-1-氧基(TEMPO)氧化细菌纤维素(TOBC)纳米纤维长丝,然后将其用于构建用于渗透能转换的纳米通道。接着,通过添加氧化石墨烯(GO)构建类珍珠母结构,在一维和二维纳米流体系统中提供狭窄的纳米通道,以实现快速离子传输。在 50 倍浓度梯度下,纤维中的纳米通道可产生 0.35 W m 的电量,离子迁移率为 0.94,能量转换效率为 38%。使用人工海水和河水组装的 GO 和 TOBC 产生的电力量密度为 0.53 W m。由 TOBC/GO 纤维制成的 RED 装置可稳定运行 15 天。该研究提出了一种减小纳米通道尺寸的简单方法,以提高纤维素基纳米纤维的离子电导率、离子选择性和功率密度,从而增加其将渗透能转化为电能的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验