Department of Geography, University of California, Santa Barbara, CA 93106
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6733-6738. doi: 10.1073/pnas.1719963115. Epub 2018 Jun 11.
There are still significant uncertainties in the magnitude and direction of carbon fluxes through coastal ecosystems. An important component of these biogeochemical budgets is ecosystem metabolism, the net result of organismal metabolic processes within an ecosystem. In this paper, I present a synthesis of published ecosystem metabolism studies from coastal ecosystems and describe an empirical observation that size-dependent patterns in aquatic gross primary production and community respiration exist across a wide range of coastal geomorphologies. Ecosystem metabolism scales to the 3/4 power with volume in deeper estuaries dominated by pelagic primary production and nearly linearly with area in shallow estuaries dominated by benthic primary production. These results can be explained by applying scaling arguments for efficient, directed transport networks developed to explain similar size-dependent patterns in organismal metabolism. The main conclusion from this synthesis is that the residence time of new, nutrient-rich water is a fundamental organizing principle for the observed patterns. Residence time changes allometrically with size in pelagic ecosystems because velocities change by only an order of magnitude across systems that span more than ten orders of magnitude in size. This nonisometric change in velocity with size requires lower specific metabolic rates at larger ecosystem sizes. This change in transport may also explain a shift from predominantly net heterotrophy to net autotrophy with increasing size. The scaling results are applied to the total estuarine area in the continental United States to estimate the contribution of estuarine systems to the overall coastal budget of organic carbon.
沿海水域生态系统碳通量的大小和方向仍存在很大的不确定性。这些生物地球化学预算的一个重要组成部分是生态系统代谢,即生态系统内生物体代谢过程的净结果。在本文中,我综合了已发表的沿海生态系统生态系统代谢研究,并描述了一个经验观察结果,即在广泛的沿海地貌范围内,水生总初级生产力和群落呼吸存在与大小相关的模式。在以浮游生物初级生产为主的较深河口,生态系统代谢与体积的 3/4 次方成正比,而在以底栖生物初级生产为主的较浅河口,生态系统代谢与面积几乎呈线性关系。这些结果可以通过应用为解释生物体代谢中类似的大小相关模式而开发的有效、定向运输网络的缩放论点来解释。本综合研究的主要结论是,新的富营养水的停留时间是观察到的模式的基本组织原则。在以浮游生物为主的生态系统中,停留时间与大小呈异速关系,因为在跨越 10 个数量级以上的系统中,速度仅变化一个数量级。这种随大小变化的速度非等比变化要求较大的生态系统的特定代谢率较低。这种运输变化也可能解释了随着大小的增加,从主要净异养向净自养的转变。这些缩放结果应用于美国大陆的总河口面积,以估计河口系统对有机碳整体沿海预算的贡献。