Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
Lab Chip. 2018 Jul 10;18(14):2023-2035. doi: 10.1039/c8lc00456k.
The demand for real-time monitoring of cell functions and cell conditions has dramatically increased with the emergence of organ-on-a-chip (OOC) systems. However, the incorporation of co-cultures and microfluidic channels in OOC systems increases their biological complexity and therefore makes the analysis and monitoring of analytical parameters inside the device more difficult. In this work, we present an approach to integrate multiple sensors in an extremely thin, porous and delicate membrane inside a liver-on-a-chip device. Specifically, three electrochemical dissolved oxygen (DO) sensors were inkjet-printed along the microfluidic channel allowing local online monitoring of oxygen concentrations. This approach demonstrates the existence of an oxygen gradient up to 17.5% for rat hepatocytes and 32.5% for human hepatocytes along the bottom channel. Such gradients are considered crucial for the appearance of zonation of the liver. Inkjet printing (IJP) was the selected technology as it allows drop on demand material deposition compatible with delicate substrates, as used in this study, which cannot withstand temperatures higher than 130 °C. For the deposition of uniform gold and silver conductive inks on the porous membrane, a primer layer using SU-8 dielectric material was used to seal the porosity of the membrane at defined areas, with the aim of building a uniform sensor device. As a proof-of-concept, experiments with cell cultures of primary human and rat hepatocytes were performed, and oxygen consumption rate was stimulated with carbonyl-cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), accelerating the basal respiration of 0.23 ± 0.07 nmol s-1/106 cells up to 5.95 ± 0.67 nmol s-1/106 cells s for rat cells and the basal respiration of 0.17 ± 0.10 nmol s-1/106 cells by up to 10.62 ± 1.15 nmol s-1/106 cells for human cells, with higher oxygen consumption of the cells seeded at the outflow zone. These results demonstrate that the approach of printing sensors inside an OOC has tremendous potential because IJP is a feasible technique for the integration of different sensors for evaluating metabolic activity of cells, and overcomes one of the major challenges still remaining on how to tap the full potential of OOC systems.
随着器官芯片 (OOC) 系统的出现,对细胞功能和细胞状态的实时监测的需求急剧增加。然而,在 OOC 系统中加入共培养物和微流道会增加其生物复杂性,因此使得分析和监测设备内部的分析参数变得更加困难。在这项工作中,我们提出了一种在肝脏芯片设备内部的极薄、多孔和脆弱的膜中集成多个传感器的方法。具体来说,三个电化学溶解氧 (DO) 传感器沿着微流道喷墨打印,允许局部在线监测氧浓度。这种方法证明了大鼠肝细胞和人肝细胞沿底部通道的氧浓度梯度高达 17.5%和 32.5%。这种梯度被认为对肝脏的分带现象的出现至关重要。喷墨打印 (IJP) 是一种被选择的技术,因为它允许按需滴材料沉积,与在这项研究中使用的脆弱基底兼容,而这种基底不能承受高于 130°C 的温度。为了在多孔膜上沉积均匀的金和银导电油墨,使用 SU-8 介电材料的底漆层用于在定义的区域密封膜的多孔性,目的是构建一个均匀的传感器设备。作为概念验证,对原代人源和大鼠肝细胞的细胞培养进行了实验,并使用羰基氰化物-4-(三氟甲氧基)苯腙 (FCCP) 刺激氧消耗率,使大鼠细胞的基础呼吸从 0.23 ± 0.07 nmol s-1/106 细胞加速至 5.95 ± 0.67 nmol s-1/106 细胞 s,人源细胞的基础呼吸从 0.17 ± 0.10 nmol s-1/106 细胞加速至 10.62 ± 1.15 nmol s-1/106 细胞,并且在流出区接种的细胞具有更高的氧消耗率。这些结果表明,在 OOC 内部打印传感器的方法具有巨大的潜力,因为 IJP 是一种可行的技术,可以集成用于评估细胞代谢活性的不同传感器,并克服了如何充分利用 OOC 系统的全部潜力的仍然存在的主要挑战之一。