Truong Nina, Zahra Abir, Lintao Ryan C V, Chauhan Rahul, Bento Giovana Fernanda, Vidal Manuel, Kim Sungjin, Lam Po Yi, Conrads Thomas, Conrads Kelly, Han Arum, Menon Ramkumar, Richardson Lauren S
John Sealy School of Medicine, University Blvd., Galveston, TX, United States.
Institute of Reproductive Health, National Institutes of Health, University of the Philippines Manila, Manila, Philippines.
Front Bioeng Biotechnol. 2025 Apr 1;13:1568389. doi: 10.3389/fbioe.2025.1568389. eCollection 2025.
Over the past decade, organ-on-chip technology (microphysiological systems or tissue chips) has reshaped physiological and pathological modeling and pharmaceutical drug assessment. FDA Modernization Act 2.0 allows for alternatives to animal testing or the use of appropriate non-animal models/new approach methods (NAMs), such as Organ-on-chips (OC) platforms or simulation models, to generate pre-clinical drug trial data for regulatory purposes primes the microfluidic field to have exponential growth in the coming years. The changes in the approaches of regulatory agencies could significantly impact the development of therapeutics for use during pregnancy. However, limitations of the devices and molecular and biochemical assay shortfalls hinder the progress of the OOC field. This review describes available reproductive and pregnancy-related OOC platforms, and the current methodologies utilized to generate endpoint datasets (e.g., microscopic imaging, immunocytochemistry, real-time polymerase chain reaction, cytokine multiplex analysis). Microfluidic platform limitations, such as fewer number of cells or low supernatant volumes and restrictions regarding fabrication materials, are described. Novel approaches (e.g., spatial transcriptomics, imaging cytometry by time of flight, exosomes analysis using Exoview) to overcome these challenges are described. OOC platforms are primed to provide biologically relevant and clinically translational data that can revolutionize physiological modeling, drug discovery, and toxicologic risk assessment. However, engineering adaptations to increase the throughput of devices (i.e., device arrays) and biological advancements to improve data throughput are both needed for these platforms to reach their full potential.
在过去十年中,芯片器官技术(微生理系统或组织芯片)重塑了生理和病理建模以及药物评估。《美国食品药品监督管理局现代化法案2.0》允许采用动物试验替代方法或使用适当的非动物模型/新方法(NAMs),如芯片器官(OC)平台或模拟模型,以生成用于监管目的的临床前药物试验数据,这促使微流控领域在未来几年实现指数级增长。监管机构方法上的变化可能会对孕期治疗药物的开发产生重大影响。然而,设备的局限性以及分子和生化检测的不足阻碍了芯片器官领域的发展。本综述描述了现有的与生殖和妊娠相关的芯片器官平台,以及用于生成终点数据集(如显微成像、免疫细胞化学、实时聚合酶链反应、细胞因子多重分析)的当前方法。文中描述了微流控平台的局限性,如细胞数量较少或上清液体积较低以及制造材料方面的限制。还介绍了克服这些挑战的新方法(如空间转录组学、飞行时间成像细胞术、使用Exoview进行外泌体分析)。芯片器官平台有望提供具有生物学相关性和临床可转化性的数据,从而彻底改变生理建模、药物发现和毒理学风险评估。然而,这些平台要充分发挥其潜力,既需要进行工程改进以提高设备通量(即设备阵列),也需要取得生物学进展以提高数据通量。