Suppr超能文献

通过喷墨打印将 RF 传感器直接打印在立体光刻 3D 打印微流控结构上,实现与打印和流体材料相互作用的动态相位控制。

Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.

机构信息

School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.

出版信息

Lab Chip. 2021 Nov 9;21(22):4364-4378. doi: 10.1039/d1lc00419k.

Abstract

Stereolithographic (SL) three-dimensional (3D) printing of microfluidic channels and inkjet printing of radio frequency (RF) electronics are promising lab-on-a-chip technologies. However, the effective integration of the two techniques has been challenging since the fabricated parts need to be combined an additional bonding process, such as plasma bonding. This study proposes combining RF electronics with SL printed microfluidic structures by directly inkjet printing onto a 3D printed mould. This allows the inkjet printing of RF electronics with high conductivity (8 × 10 S m) and high resolution (50 μm) as a surface modification of the 3D printed mould. This process combines the three-dimensional printing of microfluidic parts and the inkjet printing of RF sensors into a single process. The proposed approach increases the interaction between a printed RF part and a fluid material by adjusting the distance between them, and it can be applied to various resins and 3D printing methods. Furthermore, the proposed fabrication process was applied to a dynamic phase advanced and delayed transmission line (TL) operating at 3.8 GHz as a fluidic sensor. Consequently, using the same pattern, a higher phase shift range per microliter of 10° was obtained than the 1° for conventional phase shift TLs.

摘要

立体光固化(SL)三维(3D)打印微流道和喷墨打印射频(RF)电子技术是很有前途的微流控芯片技术。然而,由于制造的部件需要通过额外的键合工艺(如等离子键合)进行组合,因此这两种技术的有效集成一直具有挑战性。本研究提出了一种通过直接喷墨打印到 3D 打印模具上来将 RF 电子器件与 SL 打印的微流道结构相结合的方法。这允许喷墨打印具有高导电性(8×10 S m)和高分辨率(50 μm)的 RF 电子器件,作为 3D 打印模具的表面改性。该工艺将微流道部件的三维打印和 RF 传感器的喷墨打印集成到一个单一的工艺中。所提出的方法通过调整它们之间的距离增加了打印 RF 部件与流体材料之间的相互作用,并且可以应用于各种树脂和 3D 打印方法。此外,所提出的制造工艺被应用于在 3.8 GHz 下工作的动态相位超前和延迟传输线(TL)作为流体传感器。因此,使用相同的图案,每微升的相位偏移范围比传统的相位偏移 TL 的 1°提高到 10°。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验