Univeristé de Lyon, Univeristé Claude Bernard Lyon 1, LIRIS, UMR 5205 F-69622, France. Univeristé de Lyon, Univeristé Claude Bernard Lyon 1, IPNL, UMR 5822 F-69622, France.
Phys Med Biol. 2018 Jul 6;63(13):135021. doi: 10.1088/1361-6560/aacbe5.
The use of tetrahedral-based phantoms in conjunction with Monte Carlo dose calculation techniques has shown high capabilities in radiation therapy. However, the generation of a precise dose distribution can be very time-consuming since a fine tetrahedral mesh is required. In this work, we propose a new method that defines the density distribution of patient-specific tetrahedral phantoms, based upon the CT-scans and the direction of the particle beam. The final purpose is to coarsen the tetrahedral mesh to improve computational performance in Monte Carlo simulations while guaranteeing a precise dose distribution in the target volume. Contrarily to the state of the art methods that calculate the density value of a tetrahedron, locally based only on the CT-scans, our approach also takes into account the direction of the beam to minimize the error of the water equivalent thickness of the tetrahedrons before the tumor volume. In this study, the experiments carried out on a multi-layer computational phantom, and a thorax geometry, show that by applying our method on a coarse mesh, we offer a better dose distribution inside the tumor compared to other density mapping methods, in the same level of detail. This is due to the reduction of the water equivalent path length error from 9.65 mm to 0.62 mm in the case of the multi-layer phantom, and from 2.42 mm to 0.48 mm for the thorax geometry. Moreover, a similar dose coverage is obtained with refined tetrahedral meshes. As a consequence of the reduction of the number of tetrahedrons, computational time is found to be 25% shorter than both the refined tetrahedral mesh and the voxel-based structure in most cases. Using a coarse tetrahedral mesh to have accurate dose distributions on a given target is feasible as long as the water equivalent path length in the direction of the beam is respected.
基于四面体的体模与蒙特卡罗剂量计算技术结合使用,在放射治疗中显示出了很高的能力。然而,由于需要精细的四面体网格,生成精确的剂量分布可能非常耗时。在这项工作中,我们提出了一种新的方法,该方法基于 CT 扫描和粒子束的方向,定义了患者特定的四面体体模的密度分布。最终目的是细化四面体网格,以提高蒙特卡罗模拟中的计算性能,同时保证靶区的精确剂量分布。与仅基于 CT 扫描的局部计算四面体密度值的现有方法不同,我们的方法还考虑了射束的方向,以在肿瘤体积之前最小化四面体水当量厚度的误差。在这项研究中,我们在多层计算体模和胸腔几何结构上进行了实验,结果表明,通过在粗网格上应用我们的方法,与其他密度映射方法相比,我们在相同的细节水平上提供了更好的肿瘤内部剂量分布。这是由于在多层体模的情况下,水当量路径长度误差从 9.65 毫米减少到 0.62 毫米,在胸腔几何结构的情况下,从 2.42 毫米减少到 0.48 毫米。此外,通过细化四面体网格,可以获得类似的剂量覆盖。由于四面体数量的减少,在大多数情况下,计算时间比细化四面体网格和体素结构都缩短了 25%。只要在射束方向上遵守水当量路径长度,使用粗四面体网格在给定目标上获得精确的剂量分布是可行的。