Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland.
Ann Bot. 2018 Aug 27;122(3):445-459. doi: 10.1093/aob/mcy086.
The Brachypodium genus represents a useful model system to study grass genome organization. Palaeogenomic analyses (e.g. Murat F, Armero A, Pont C, Klopp C, Salse J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nature Genetics49: 490-496) have identified polyploidization and dysploidy as the prime mechanisms driving the diversity of plant karyotypes and nested chromosome fusions (NCFs) crucial for shaping grass chromosomes. This study compares the karyotype structure and evolution in B. distachyon (genome Bd), B. stacei (genome Bs) and in their putative allotetraploid B. hybridum (genomes BdBs).
Brachypodium chromosomes were measured and identified using multicolour fluorescence in situ hybridization (mcFISH). For higher resolution, comparative chromosome barcoding was developed using sets of low-repeat, physically mapped B. distachyon-derived bacterial artificial chromosome (BAC) clones.
All species had rather small chromosomes, and essentially all in the Bs genome were morphometrically indistinguishable. Seven BACs combined with two rDNA-based probes provided unambiguous and reproducible chromosome discrimination. Comparative chromosome barcoding revealed NCFs that contributed to the reduction in the x = 12 chromosome number that has been suggested for the intermediate ancestral grass karyotype. Chromosome Bd3 derives from two NCFs of three ancestral chromosomes (Os2, Os8, Os10). Chromosome Bs6 shows an ancient Os8/Os10 NCF, whilst Bs4 represents Os2 only. Chromosome Bd4 originated from a descending dysploidy that involves two NCFs of Os12, Os9 and Os11. The specific distribution of BACs along Bs9 and Bs5, in both B. stacei and B. hybridum, suggests a Bs genome-specific Robertsonian rearrangement.
mcFISH-based karyotyping identifies all chromosomes in Brachypodium annuals. Comparative chromosome barcoding reveals rearrangements responsible for the diverse organization of Bd and Bs genomes and provides new data regarding karyotype evolution since the split of the two diploids. The fact that no chromosome rearrangements were observed in B. hybridum compared with the karyotypes of its phylogenetic ancestors suggests prolonged genome stasis after the formation of the allotetraploid.
短柄草属代表了一个研究禾本科基因组组织的有用模式系统。古基因组分析(例如,Murat F、Armero A、Pont C、Klopp C、Salse J. 2017. 重建开花植物最近共同祖先的基因组。自然遗传学 49: 490-496)已经确定了多倍化和非整倍体作为驱动植物染色体组多样性和嵌套染色体融合(NCFs)的主要机制,这对于塑造禾本科染色体至关重要。本研究比较了短柄草(基因组 Bd)、短柄草(基因组 Bs)及其假定的异源四倍体短柄草杂种(基因组 BdBs)的染色体组结构和进化。
使用多色荧光原位杂交(mcFISH)测量和鉴定短柄草染色体。为了获得更高的分辨率,开发了使用低重复、物理映射的短柄草衍生细菌人工染色体(BAC)克隆的比较染色体条形码。
所有物种的染色体都很小,Bs 基因组中的染色体基本上在形态上无法区分。七种 BAC 与两个基于 rDNA 的探针相结合,提供了明确和可重复的染色体识别。比较染色体条形码揭示了导致中间祖先禾本科染色体数减少的 NCFs。染色体 Bd3 来自三个祖先染色体(Os2、Os8、Os10)的两个 NCFs。染色体 Bs6 显示了古老的 Os8/Os10 NCF,而 Bs4 仅代表 Os2。染色体 Bd4 起源于涉及 Os12、Os9 和 Os11 的两个 NCF 的下降非整倍性。BACs 在 Bs9 和 Bs5 中的特定分布,无论是在短柄草还是短柄草杂种中,都表明了 Bs 基因组特有的罗伯逊易位。
基于 mcFISH 的核型分析鉴定了短柄草属一年生植物的所有染色体。比较染色体条形码揭示了导致 Bd 和 Bs 基因组多样化组织的重排,并提供了关于自两个二倍体分裂以来染色体进化的新数据。与它的系统发育祖先的核型相比,在短柄草杂种中没有观察到染色体重排,这表明在异源四倍体形成后,基因组处于长期稳定状态。