Suppr超能文献

肺部光谱成像中去除超极化氙气相污染物。

Removal of hyperpolarized Xe gas-phase contamination in spectroscopic imaging of the lungs.

机构信息

Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.

Department of Radiology, University of Wisconsin, Madison, Wisconsin.

出版信息

Magn Reson Med. 2018 Dec;80(6):2586-2597. doi: 10.1002/mrm.27349. Epub 2018 Jun 12.

Abstract

PURPOSE

A novel technique is presented for retrospective estimation and removal of gas-phase hyperpolarized Xenon-129 (HP Xe) from images of HP Xe dissolved in the barrier (comprised of parenchymal lung tissue and blood plasma) and red blood cell (RBC) phases. The primary aim is mitigating RF pulse performance limitations on measures of gas exchange (e.g., barrier-gas and RBC-gas ratios). Correction for gas contamination would simplify technical dissemination of HP Xe applications across sites with varying hardware performance, scanner vendors, and models.

METHODS

Digital lung phantom and human subject experiments (N = 8 healthy; N = 1 with idiopathic pulmonary fibrosis) were acquired with 3D radial trajectory and 1-point Dixon spectroscopic imaging to assess the correction method for mitigating barrier and RBC imaging artifacts. Dependence of performance on TE, image SNR, and gas contamination level were characterized. Inter- and intra-subject variation in the dissolved-phase ratios were quantified and compared to human subject experiments before and after correction.

RESULTS

Gas contamination resulted in image artifacts similar to those in disease that were mitigated after correction in both simulated and human subject data; for simulation experiments performance varied with TE, but was independent of image SNR and the amount of gas contamination. Artifacts and variation of barrier and RBC components were reduced after correction in both simulation and healthy human lungs (barrier, P = 0.01; RBC, P = 0.045).

CONCLUSION

The proposed technique significantly reduced regional variations in barrier and RBC ratios, separated using a 1-point Dixon approach, with improved accuracy of dissolved-phase HP Xe images confirmed in simulation experiments.

摘要

目的

提出了一种从屏障相(由实质肺组织和血浆组成)和红细胞相(RBC)中溶解的超极化氙-129(HP Xe)的图像中回顾性估计和去除气相 HP Xe 的新技术。主要目的是减轻 RF 脉冲性能对气体交换测量(例如,屏障-气体和 RBC-气体比)的限制。气体污染的校正将简化 HP Xe 应用在具有不同硬件性能、扫描仪供应商和型号的不同站点之间的技术传播。

方法

使用 3D 径向轨迹和 1 点 Dixon 光谱成像采集数字肺体模和人体实验(健康者 8 例,特发性肺纤维化 1 例),以评估校正方法对减轻屏障和 RBC 成像伪影的效果。评估了性能对 TE、图像 SNR 和气体污染水平的依赖性。定量评估和比较了溶解相比率的个体间和个体内变化,以及校正前后的人体实验。

结果

气体污染导致与疾病相似的图像伪影,校正后在模拟和人体数据中均得到缓解;对于模拟实验,性能随 TE 变化,但与图像 SNR 和气体污染量无关。校正后,模拟和健康人体肺中的屏障和 RBC 成分的伪影和变化均减少(屏障,P=0.01;RBC,P=0.045)。

结论

所提出的技术显著降低了使用 1 点 Dixon 方法分离的屏障和 RBC 比率的区域变化,在模拟实验中证实了溶解相 HP Xe 图像的准确性得到了提高。

相似文献

1
Removal of hyperpolarized Xe gas-phase contamination in spectroscopic imaging of the lungs.
Magn Reson Med. 2018 Dec;80(6):2586-2597. doi: 10.1002/mrm.27349. Epub 2018 Jun 12.
3
Hyperpolarized Xe gas transfer MRI: the transition from 1.5T to 3T.
Magn Reson Med. 2018 Dec;80(6):2374-2383. doi: 10.1002/mrm.27377. Epub 2018 Jul 19.
4
Removal of off-resonance xenon gas artifacts in pulmonary gas-transfer MRI.
Magn Reson Med. 2021 Aug;86(2):907-915. doi: 10.1002/mrm.28737. Epub 2021 Mar 4.
7
Repeatability of regional pulmonary functional metrics of Hyperpolarized Xe dissolved-phase MRI.
J Magn Reson Imaging. 2019 Oct;50(4):1182-1190. doi: 10.1002/jmri.26745. Epub 2019 Apr 10.
9
Using hyperpolarized Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis.
Thorax. 2018 Jan;73(1):21-28. doi: 10.1136/thoraxjnl-2017-210070. Epub 2017 Aug 31.
10
A decay-modeled compressed sensing reconstruction approach for non-Cartesian hyperpolarized Xe MRI.
Magn Reson Med. 2024 Oct;92(4):1363-1375. doi: 10.1002/mrm.30188. Epub 2024 Jun 11.

引用本文的文献

3
Functional Pulmonary Imaging.
J Magn Reson Imaging. 2025 Oct;62(4):986-1008. doi: 10.1002/jmri.29778. Epub 2025 Apr 11.
4
A thermally polarized, dissolved-phase Xe phantom for quality-control and multisite comparisons of gas-exchange imaging.
J Magn Reson. 2025 Feb;371:107829. doi: 10.1016/j.jmr.2025.107829. Epub 2025 Jan 13.
5
A decay-modeled compressed sensing reconstruction approach for non-Cartesian hyperpolarized Xe MRI.
Magn Reson Med. 2024 Oct;92(4):1363-1375. doi: 10.1002/mrm.30188. Epub 2024 Jun 11.
6
Lung Volume Dependence and Repeatability of Hyperpolarized Xe MRI Gas Uptake Metrics in Healthy Volunteers and Participants with COPD.
Radiol Cardiothorac Imaging. 2023 Jun 22;5(3):e220096. doi: 10.1148/ryct.220096. eCollection 2023 Jun.
7
A single-breath-hold protocol for hyperpolarized Xe ventilation and gas exchange imaging.
NMR Biomed. 2023 Aug;36(8):e4923. doi: 10.1002/nbm.4923. Epub 2023 Mar 29.
8
Hyperpolarized Xe MR Spectroscopy in the Lung Shows 1-year Reduced Function in Idiopathic Pulmonary Fibrosis.
Radiology. 2022 Dec;305(3):688-696. doi: 10.1148/radiol.211433. Epub 2022 Jul 26.
9
Pediatric Xe Gas-Transfer MRI-Feasibility and Applicability.
J Magn Reson Imaging. 2022 Oct;56(4):1207-1219. doi: 10.1002/jmri.28136. Epub 2022 Mar 4.
10
Utilizing flip angle/TR equivalence to reduce breath hold duration in hyperpolarized Xe 1-point Dixon gas exchange imaging.
Magn Reson Med. 2022 Mar;87(3):1490-1499. doi: 10.1002/mrm.29040. Epub 2021 Oct 13.

本文引用的文献

2
Quantitative analysis of hyperpolarized Xe gas transfer MRI.
Med Phys. 2017 Jun;44(6):2415-2428. doi: 10.1002/mp.12264. Epub 2017 May 18.
3
The role of hyperpolarized xenon in MR imaging of pulmonary function.
Eur J Radiol. 2017 Jan;86:343-352. doi: 10.1016/j.ejrad.2016.09.015. Epub 2016 Sep 16.
4
Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL.
Magn Reson Med. 2016 Aug;76(2):566-76. doi: 10.1002/mrm.25911. Epub 2015 Aug 29.
6
Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis.
J Appl Physiol (1985). 2014 Sep 15;117(6):577-85. doi: 10.1152/japplphysiol.00326.2014. Epub 2014 Jul 18.
7
Radiofrequency pulse design for the selective excitation of dissolved 129Xe.
Magn Reson Med. 2015 Jan;73(1):21-30. doi: 10.1002/mrm.25089. Epub 2014 Jan 6.
8
Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.
J Appl Physiol (1985). 2013 Sep;115(6):850-60. doi: 10.1152/japplphysiol.00092.2013. Epub 2013 Jul 11.
9
Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI.
J Magn Reson Imaging. 2014 Feb;39(2):346-59. doi: 10.1002/jmri.24181. Epub 2013 May 16.
10
Single-breath xenon polarization transfer contrast (SB-XTC): implementation and initial results in healthy humans.
J Magn Reson Imaging. 2013 Feb;37(2):457-70. doi: 10.1002/jmri.23823. Epub 2012 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验