Suppr超能文献

在特发性肺纤维化患者中,采用灌注受限气体——超极化129Xe气体转移光谱法测量弥散受限情况。

Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis.

作者信息

Kaushik S Sivaram, Freeman Matthew S, Yoon Suk W, Liljeroth Maria G, Stiles Jane V, Roos Justus E, Foster W Michael, Rackley Craig R, McAdams H P, Driehuys Bastiaan

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina; Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina;

Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina; Medical Physics Graduate Program, Duke University, Durham, North Carolina;

出版信息

J Appl Physiol (1985). 2014 Sep 15;117(6):577-85. doi: 10.1152/japplphysiol.00326.2014. Epub 2014 Jul 18.

Abstract

Although xenon is classically taught to be a "perfusion-limited" gas, (129)Xe in its hyperpolarized (HP) form, when detected by magnetic resonance (MR), can probe diffusion limitation. Inhaled HP (129)Xe diffuses across the pulmonary blood-gas barrier, and, depending on its tissue environment, shifts its resonant frequency relative to the gas-phase reference (0 ppm) by 198 ppm in tissue/plasma barrier and 217 ppm in red blood cells (RBCs). In this work, we hypothesized that in patients with idiopathic pulmonary fibrosis (IPF), the ratio of (129)Xe spectroscopic signal in the RBCs vs. barrier would diminish as diffusion-limitation delayed replenishment of (129)Xe magnetization in RBCs. To test this hypothesis, (129)Xe spectra were acquired in 6 IPF subjects as well as 11 healthy volunteers to establish a normal range. The RBC:barrier ratio was 0.55 ± 0.13 in healthy volunteers but was 3.3-fold lower in IPF subjects (0.16 ± 0.03, P = 0.0002). This was caused by a 52% reduction in the RBC signal (P = 0.02) and a 58% increase in the barrier signal (P = 0.01). Furthermore, the RBC:barrier ratio strongly correlated with lung diffusing capacity for carbon monoxide (DLCO) (r = 0.89, P < 0.0001). It exhibited a moderate interscan variability (8.25%), and in healthy volunteers it decreased with greater lung inflation (r = -0.78, P = 0.005). This spectroscopic technique provides a noninvasive, global probe of diffusion limitation and gas-transfer impairment and forms the basis for developing 3D MR imaging of gas exchange.

摘要

虽然传统观念认为氙气是一种“灌注受限”气体,但超极化(HP)形式的(129)Xe在通过磁共振(MR)检测时,可探测扩散限制。吸入的HP(129)Xe穿过肺气血屏障,并且根据其组织环境,相对于气相参考值(0 ppm),其共振频率在组织/血浆屏障中偏移198 ppm,在红细胞(RBC)中偏移217 ppm。在本研究中,我们假设在特发性肺纤维化(IPF)患者中,由于扩散限制延迟了RBC中(129)Xe磁化的补充,RBC与屏障中(129)Xe光谱信号的比值会降低。为了验证这一假设,对6名IPF受试者和11名健康志愿者采集了(129)Xe光谱,以建立正常范围。健康志愿者的RBC:屏障比值为0.55±0.13,但IPF受试者的该比值低3.3倍(0.16±0.03,P = 0.0002)。这是由于RBC信号降低了52%(P = 0.02),而屏障信号增加了58%(P = 0.01)。此外,RBC:屏障比值与一氧化碳肺扩散容量(DLCO)密切相关(r = 0.89,P < 0.0001)。它表现出中等程度的扫描间变异性(8.25%),并且在健康志愿者中,随着肺膨胀程度增加而降低(r = -0.78,P = 0.005)。这种光谱技术提供了一种非侵入性的、对扩散限制和气体交换受损的整体探测方法,并为开发气体交换的三维MR成像奠定了基础。

相似文献

1
Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis.
J Appl Physiol (1985). 2014 Sep 15;117(6):577-85. doi: 10.1152/japplphysiol.00326.2014. Epub 2014 Jul 18.
3
Using hyperpolarized Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis.
Thorax. 2018 Jan;73(1):21-28. doi: 10.1136/thoraxjnl-2017-210070. Epub 2017 Aug 31.
5
3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis.
NMR Biomed. 2014 Dec;27(12):1502-14. doi: 10.1002/nbm.3127. Epub 2014 May 12.
7
Repeatability of regional pulmonary functional metrics of Hyperpolarized Xe dissolved-phase MRI.
J Magn Reson Imaging. 2019 Oct;50(4):1182-1190. doi: 10.1002/jmri.26745. Epub 2019 Apr 10.
8
Quantitative analysis of hyperpolarized Xe gas transfer MRI.
Med Phys. 2017 Jun;44(6):2415-2428. doi: 10.1002/mp.12264. Epub 2017 May 18.
9
Hyperpolarized Xe MR Spectroscopy in the Lung Shows 1-year Reduced Function in Idiopathic Pulmonary Fibrosis.
Radiology. 2022 Dec;305(3):688-696. doi: 10.1148/radiol.211433. Epub 2022 Jul 26.

引用本文的文献

1
The emerging role of hyperpolarized Xe MRI in pulmonary hypertension.
Expert Rev Respir Med. 2025 Jul 10:1-5. doi: 10.1080/17476348.2025.2529543.
2
MRI for biology-guided radiation therapy: Are we there yet? A summary of the 2024 ISMRM member-initiated session.
Magn Reson Med. 2025 Oct;94(4):1672-1683. doi: 10.1002/mrm.30616. Epub 2025 Jun 24.
3
Ultrasensitive Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing.
Adv Sci (Weinh). 2025 Feb;12(8):e2413426. doi: 10.1002/advs.202413426. Epub 2025 Jan 21.
4
A thermally polarized, dissolved-phase Xe phantom for quality-control and multisite comparisons of gas-exchange imaging.
J Magn Reson. 2025 Feb;371:107829. doi: 10.1016/j.jmr.2025.107829. Epub 2025 Jan 13.
5
A review on functional lung avoidance radiotherapy plan for lung cancer.
Front Oncol. 2024 Dec 5;14:1429837. doi: 10.3389/fonc.2024.1429837. eCollection 2024.
6
Pulmonary MRI in Newborns and Children.
J Magn Reson Imaging. 2025 May;61(5):2094-2115. doi: 10.1002/jmri.29669. Epub 2024 Dec 6.
7
Direct imaging of pulmonary gas exchange with hyperpolarized xenon MRI.
Innovation (Camb). 2024 Oct 19;5(6):100720. doi: 10.1016/j.xinn.2024.100720. eCollection 2024 Nov 4.
9
10
Compressed sensing reconstruction for high-SNR, rapid dissolved Xe gas exchange MRI.
Magn Reson Med. 2025 Feb;93(2):741-750. doi: 10.1002/mrm.30312. Epub 2024 Sep 25.

本文引用的文献

1
Alveolo-capillary diffusion of hyperpolarized 129Xe as a marker of pulmonary fibrosis.
J Appl Physiol (1985). 2014 Sep 15;117(6):573-4. doi: 10.1152/japplphysiol.00688.2014. Epub 2014 Aug 7.
2
A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis.
N Engl J Med. 2014 May 29;370(22):2083-92. doi: 10.1056/NEJMoa1402582. Epub 2014 May 18.
3
Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis.
N Engl J Med. 2014 May 29;370(22):2071-82. doi: 10.1056/NEJMoa1402584. Epub 2014 May 18.
4
3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis.
NMR Biomed. 2014 Dec;27(12):1502-14. doi: 10.1002/nbm.3127. Epub 2014 May 12.
5
Radiofrequency pulse design for the selective excitation of dissolved 129Xe.
Magn Reson Med. 2015 Jan;73(1):21-30. doi: 10.1002/mrm.25089. Epub 2014 Jan 6.
6
Quantification of human lung structure and physiology using hyperpolarized 129Xe.
Magn Reson Med. 2014 Jan;71(1):339-44. doi: 10.1002/mrm.24992. Epub 2013 Oct 23.
7
Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.
J Appl Physiol (1985). 2013 Sep;115(6):850-60. doi: 10.1152/japplphysiol.00092.2013. Epub 2013 Jul 11.
8
Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI.
J Magn Reson Imaging. 2014 Feb;39(2):346-59. doi: 10.1002/jmri.24181. Epub 2013 May 16.
9
A review of current and novel therapies for idiopathic pulmonary fibrosis.
J Thorac Dis. 2013 Feb;5(1):48-73. doi: 10.3978/j.issn.2072-1439.2012.12.07.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验