Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , 48149 Münster , Germany.
Acc Chem Res. 2018 Jul 17;51(7):1701-1710. doi: 10.1021/acs.accounts.8b00192. Epub 2018 Jun 12.
The axioms of stereoelectronic theory constitute an atlas to navigate the contours of molecular space. All too rarely lauded, the advent and development of stereoelectronic theory has been one of organic chemistry's greatest triumphs. Inevitably, however, in the absence of a comprehensive treatise, many of the field's pioneers do not receive the veneration that they merit. Rather their legacies are the stereoelectronic pillars that persist in teaching and research. This ubiquity continues to afford practitioners of organic chemistry with an abundance of opportunities for creative endeavor in reaction design, in conceiving novel activation modes, in preorganizing intermediates, or in stabilizing productive transition states and products. Antipodal to steric governance, which mitigates destabilizing nonbonding interactions, stereoelectronic control allows well-defined, often complementary, conformations to be populated. Indeed, the prevalence of stabilizing hyperconjugative interactions in biosynthetic processes renders this approach to molecular preorganization decidedly biomimetic and, by extension, expansive. In this Account, the evolution and application of a simple donor-acceptor model based on the fluorine gauche effect is delineated. Founded on reinforcing hyperconjugative interactions involving C(sp)-H bonding orbitals and C(sp)-X antibonding orbitals [σ → σ*], this general stratagem has been used in conjunction with an array of secondary noncovalent interactions to achieve acyclic conformational control (ACC) in structures of interest. These secondary effects range from 1,3-allylic strain (A) through to electrostatic charge-dipole and cation-π interactions. Synergy between these interactions ensures that rotation about strategic C(sp)-C(sp) bonds is subject to the stereoelectronic requirement for antiperiplanarity (180°). Logically, in a generic [X-CH-CH-Y] system (X, Y = electron withdrawing groups) conformations in which the two C(sp)-X bonds are synclinal (i.e., gauche) are significantly populated. As such, simple donor-acceptor models are didactically and predictively powerful in achieving topological preorganization. In the case of the gauche effect, the low steric demand of fluorine ensures that the remaining substituents at the C(sp) hybridized center are placed in a predictable area of molecular space: An exit vector analogy is thus appropriate. Furthermore, the intrinsic chemical stability of the C-F bond is advantageous, thus it may be considered as an inert conformational steering group: This juxtaposition of size and electronegativity renders fluorinated organic molecules unique among the organo-halogen series. Cognizant that the replacement of one fluorine atom in the difluoroethylene motif by another electron withdrawing group preserves the gauche conformation, it was reasoned that β-fluoroamines would be intriguing candidates for investigation. The burgeoning field of Lewis base catalysis, particularly via iminium ion activation, provided a timely platform from which to explore a postulated fluorine-iminium ion gauche effect. Necessarily, activation of this stereoelectronic effect requires a process of intramolecularization to generate the electron deficient neighboring group: Examples include protonation, condensation to generate iminium salts, or acylation. This process, akin to substrate binding, has obvious parallels with enzymatic catalysis, since it perturbs the conformational dynamics of the system [ synclinal-endo, antiperiplanar, synclinal-exo]. This Account details the development of conformationally predictable small molecules based on the [X-C-C-F] motif through a logical process of molecular design and illustrates their synthetic value in enantioselective catalysis.
立体电子理论的公理构成了分子空间轮廓的导航图。尽管立体电子理论的出现和发展是有机化学的最大成就之一,但它却很少受到赞誉。然而,由于缺乏全面的论述,该领域的许多先驱并没有得到应有的尊重。相反,他们的遗产是那些在教学和研究中仍然存在的立体电子支柱。这种普遍性继续为有机化学从业者在反应设计、构思新的活化模式、预组织中间体或稳定高产过渡态和产物方面提供了大量的创造性努力的机会。与减轻不稳定非键相互作用的空间位阻控制相反,立体电子控制允许定义明确的、通常互补的构象被占据。事实上,在生物合成过程中稳定的超共轭相互作用的普遍性使得这种分子预组织方法具有决定性的仿生特性,并因此具有扩展性。在本报告中,阐述了基于氟原子 gauche 效应的简单供体-受体模型的演变和应用。该模型基于涉及 C(sp)-H 键轨道和 C(sp)-X 反键轨道的增强超共轭相互作用[σ→σ*],该一般策略已与一系列辅助非共价相互作用结合使用,以在感兴趣的结构中实现非循环构象控制(ACC)。这些次要效应范围从 1,3-烯丙基应变(A)到静电电荷-偶极和阳离子-π相互作用。这些相互作用的协同作用确保了关于战略 C(sp)-C(sp)键的旋转受到反式平面性(180°)的立体电子要求的限制。逻辑上,在通用的[X-CH-CH-Y]系统(X,Y = 吸电子基团)中,两个 C(sp)-X 键呈顺式(即 gauche)的构象明显丰富。因此,在实现拓扑预组织方面,简单的供体-受体模型具有教学和预测的强大功能。在 gauche 效应的情况下,氟原子的低空间需求确保了 C(sp)杂化中心上的其余取代基被放置在分子空间的可预测区域中:因此,出口向量类比是合适的。此外,C-F 键的固有化学稳定性是有利的,因此它可以被视为惰性构象导向基团:这种大小和电负性的并置使氟化有机分子在有机卤系列中独一无二。考虑到在二氟乙烯基序中用另一个吸电子基团替换一个氟原子保留 gauche 构象,人们认为β-氟胺将是有趣的研究候选物。路易斯碱催化的新兴领域,特别是通过亚胺离子活化,提供了一个及时的平台,可以从中探索假定的氟-亚胺离子 gauche 效应。立体电子效应的这种激活必然需要一个分子内化过程来生成缺电子相邻基团:例子包括质子化、生成亚胺盐的缩合,或酰化。这个过程类似于底物结合,与酶催化有明显的相似之处,因为它扰乱了系统的构象动力学[顺式-内,反式-平面,顺式-外]。本报告详细介绍了基于[X-C-C-F]基序的构象可预测小分子的发展,通过逻辑的分子设计过程,并说明了它们在对映选择性催化中的合成价值。