Suppr超能文献

虚拟现实序列反应时任务中的概率运动序列学习。

Probabilistic motor sequence learning in a virtual reality serial reaction time task.

机构信息

Department of Experimental Psychology, University of Groningen, Groningen, The Netherlands.

Behavioral and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands.

出版信息

PLoS One. 2018 Jun 12;13(6):e0198759. doi: 10.1371/journal.pone.0198759. eCollection 2018.

Abstract

The serial reaction time task is widely used to study learning and memory. The task is traditionally administered by showing target positions on a computer screen and collecting responses using a button box or keyboard. By comparing response times to random or sequenced items or by using different transition probabilities, various forms of learning can be studied. However, this traditional laboratory setting limits the number of possible experimental manipulations. Here, we present a virtual reality version of the serial reaction time task and show that learning effects emerge as expected despite the novel way in which responses are collected. We also show that response times are distributed as expected. The current experiment was conducted in a blank virtual reality room to verify these basic principles. For future applications, the technology can be used to modify the virtual reality environment in any conceivable way, permitting a wide range of previously impossible experimental manipulations.

摘要

序列反应时任务被广泛用于研究学习和记忆。该任务传统上通过在计算机屏幕上显示目标位置,并使用按钮盒或键盘来收集响应来执行。通过比较对随机或序列项目的反应时间,或者通过使用不同的转移概率,可以研究各种形式的学习。然而,这种传统的实验室设置限制了可能的实验操作的数量。在这里,我们提出了序列反应时任务的虚拟现实版本,并表明尽管以新的方式收集响应,但仍会出现预期的学习效果。我们还表明,响应时间的分布符合预期。当前的实验是在一个空白的虚拟现实房间中进行的,以验证这些基本原理。对于未来的应用,该技术可以用于以任何想象得到的方式修改虚拟现实环境,从而实现以前不可能的广泛的实验操作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验