Stegmaier Sina, Reuter Karsten, Scheurer Christoph
Department of Chemistry, Technical University of Munich, 85747 Garching, Germany.
Theory Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
Nanomaterials (Basel). 2022 Aug 24;12(17):2912. doi: 10.3390/nano12172912.
While great effort has been focused on bulk material design for high-performance All Solid-State Batteries (ASSBs), solid-solid interfaces, which typically extend over a nanometer regime, have been identified to severely impact cell performance. Major challenges are Li dendrite penetration along the grain boundary network of the Solid-State Electrolyte (SSE) and reductive decomposition at the electrolyte/electrode interface. A naturally forming nanoscale complexion encapsulating ceramic Li1+xAlxTi2-x(PO4)3 (LATP) SSE grains has been shown to serve as a thin protective layer against such degradation mechanisms. To further exploit this feature, we study the interfacial doping of divalent Mg2+ into LATP grain boundaries. Molecular Dynamics simulations for a realistic atomistic model of the grain boundary reveal Mg2+ to be an eligible dopant candidate as it rarely passes through the complexion and thus does not degrade the bulk electrolyte performance. Tuning the interphase stoichiometry promotes the suppression of reductive degradation mechanisms by lowering the Ti4+ content while simultaneously increasing the local Li+ conductivity. The Mg2+ doping investigated in this work identifies a promising route towards active interfacial engineering at the nanoscale from a computational perspective.
尽管人们在高性能全固态电池(ASSB)的块状材料设计上投入了巨大努力,但已发现通常延伸至纳米尺度的固-固界面会严重影响电池性能。主要挑战包括锂枝晶沿固态电解质(SSE)的晶界网络渗透以及在电解质/电极界面处的还原分解。已证明一种自然形成的包裹陶瓷Li1+xAlxTi2-x(PO4)3(LATP)SSE颗粒的纳米级络合物可作为防止此类降解机制的薄保护层。为了进一步利用这一特性,我们研究了二价Mg2+在LATP晶界中的界面掺杂。对晶界的真实原子模型进行的分子动力学模拟表明,Mg2+是一种合适的掺杂候选物,因为它很少穿过络合物,因此不会降低块状电解质的性能。调整相间化学计量比可通过降低Ti4+含量同时提高局部Li+电导率来促进对还原降解机制的抑制。从计算角度来看,这项工作中研究的Mg2+掺杂确定了一条在纳米尺度上进行活性界面工程的有前景的途径。