Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States.
Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States.
J Neurosci Methods. 2018 Sep 1;307:210-220. doi: 10.1016/j.jneumeth.2018.05.022. Epub 2018 Jun 9.
BACKGROUND: Alzheimer's disease (AD) is the major cause of dementia that has increased dramatically in prevalence over the past several decades. Yet many questions still surround the etiology of AD. Recently, extracellular vesicles (EVs) that transport protein, lipid, and nucleic acids from cell to cell have been implicated in the clearance and propagation of misfolded proteins. Investigation of EVs in AD progression, and their potential diagnostic utility may contribute to understanding and treating AD. However, the challenges of isolating brain-derived EVs have in part hindered these studies. NEW METHOD: Here, we provide an optimized method for the enrichment of brain-derived EVs by iodixanol floatation density gradient for mass spectrometry analysis. RESULTS: We demonstrate the isolation of these vesicles and the enrichment of EV proteins compared to sedimentation gradient isolation of vesicles. Moreover, comparative proteomic analysis of brain-derived EVs from healthy and AD mouse brains revealed differences in vesicular content including proteins involved in aging, immune response, and oxidation-reduction maintenance. These changes provide insight into AD-associated neurodegeneration and potential biomarkers of AD. Comparison with existing methods: Recent techniques have used sedimentation sucrose gradients to isolate EVs from brain tissue. However, here we demonstrate the advantages of floatation iodixanol density gradient isolation of small EVs, and provide evidence of EV enrichment by electron microscopy, immunoblot analysis, and quantitative mass spectrometry. CONCLUSIONS: Together these findings offer a rigorous technique for enriching whole tissue-derived EVs for downstream analyses, and application of this approach to uncovering molecular changes in AD progression and other neurological conditions.
背景:阿尔茨海默病(AD)是痴呆症的主要病因,在过去几十年中其患病率显著增加。然而,AD 的病因仍有许多未解之谜。最近,细胞外囊泡(EVs)被认为在错误折叠蛋白的清除和传播中起作用,这些囊泡可将蛋白质、脂质和核酸从一个细胞运输到另一个细胞。研究 AD 进展过程中的 EVs 及其潜在的诊断效用,可能有助于理解和治疗 AD。然而,从大脑中分离 EVs 的挑战在一定程度上阻碍了这些研究。
新方法:在这里,我们提供了一种通过碘克沙醇漂浮密度梯度分离法对脑源性 EVs 进行富集的优化方法,用于质谱分析。
结果:我们证明了这些囊泡的分离,以及与沉淀梯度分离囊泡相比 EV 蛋白的富集。此外,对健康和 AD 小鼠大脑来源的脑源性 EVs 的比较蛋白质组学分析显示,囊泡内容物存在差异,包括与衰老、免疫反应和氧化还原维持相关的蛋白。这些变化为 AD 相关的神经退行性变和 AD 的潜在生物标志物提供了深入了解。与现有方法的比较:最近的技术使用沉降蔗糖梯度从脑组织中分离 EVs。然而,在这里,我们证明了漂浮碘克沙醇密度梯度分离小 EVs 的优势,并通过电子显微镜、免疫印迹分析和定量质谱证实了 EV 的富集。
结论:这些发现共同提供了一种严格的技术,用于富集全组织衍生的 EVs 进行下游分析,并应用这种方法来揭示 AD 进展和其他神经疾病中的分子变化。
Mol Ther Nucleic Acids. 2025-1-25
J Extracell Vesicles. 2024-11
Int J Nanomedicine. 2024
J Extracell Vesicles. 2024-4
J Cancer Res Clin Oncol. 2024-4-10
Biochem Pharmacol. 2018-1-3
Acta Neuropathol Commun. 2017-8-29
J Extracell Vesicles. 2017-7-26
J Extracell Vesicles. 2016-7-13