Suppr超能文献

通过支架介导的慢病毒递送来调节脱细胞组织重塑在解剖形状的骨软骨构建体中。

Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs.

机构信息

Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.

Duke University, Durham, NC 27710, USA.

出版信息

Biomaterials. 2018 Sep;177:161-175. doi: 10.1016/j.biomaterials.2018.04.049. Epub 2018 May 30.

Abstract

Cartilage-derived matrix (CDM) has emerged as a promising scaffold material for tissue engineering of cartilage and bone due to its native chondroinductive capacity and its ability to support endochondral ossification. Because it consists of native tissue, CDM can undergo cellular remodeling, which can promote integration with host tissue and enables it to be degraded and replaced by neotissue over time. However, enzymatic degradation of decellularized tissues can occur unpredictably and may not allow sufficient time for mechanically competent tissue to form, especially in the harsh inflammatory environment of a diseased joint. The goal of the current study was to engineer cartilage and bone constructs with the ability to inhibit aberrant inflammatory processes caused by the cytokine interleukin-1 (IL-1), through scaffold-mediated delivery of lentiviral particles containing a doxycycline-inducible IL-1 receptor antagonist (IL-1Ra) transgene on anatomically-shaped CDM constructs. Additionally, scaffold-mediated lentiviral gene delivery was used to facilitate spatial organization of simultaneous chondrogenic and osteogenic differentiation via site-specific transduction of a single mesenchymal stem cell (MSC) population to overexpress either chondrogenic, transforming growth factor-beta 3 (TGF-β3), or osteogenic, bone morphogenetic protein-2 (BMP-2), transgenes. Controlled induction of IL-1Ra expression protected CDM hemispheres from inflammation-mediated degradation, and supported robust bone and cartilage tissue formation even in the presence of IL-1. In the absence of inflammatory stimuli, controlled cellular remodeling was exploited as a mechanism for fusing concentric CDM hemispheres overexpressing BMP-2 and TGF-β3 into a single bi-layered osteochondral construct. Our findings demonstrate that site-specific delivery of inducible and tunable transgenes confers spatial and temporal control over both CDM scaffold remodeling and neotissue composition. Furthermore, these constructs provide a microphysiological in vitro joint organoid model with site-specific, tunable, and inducible protein delivery systems for examining the spatiotemporal response to pro-anabolic and/or inflammatory signaling across the osteochondral interface.

摘要

软骨衍生基质 (CDM) 因其具有天然的软骨诱导能力和支持软骨内成骨的能力,已成为软骨和骨组织工程中很有前途的支架材料。由于它由天然组织组成,CDM 可以进行细胞重塑,这可以促进与宿主组织的整合,并使它随着时间的推移被新组织降解和替代。然而,脱细胞组织的酶降解可能会不可预测地发生,并且可能不允许形成足够机械能力的组织,尤其是在患病关节的炎症环境中。本研究的目的是通过在解剖形状的 CDM 构建体上进行支架介导的慢病毒颗粒传递,构建具有抑制细胞因子白细胞介素-1 (IL-1) 引起的异常炎症过程的能力的软骨和骨构建体,这些慢病毒颗粒包含四环素诱导的 IL-1 受体拮抗剂 (IL-1Ra) 转基因。此外,通过对单个间充质干细胞 (MSC) 群体进行特异性转导,支架介导的慢病毒基因传递用于促进同时软骨和成骨分化的空间组织,以过表达软骨形成的转化生长因子-β3 (TGF-β3) 或成骨的骨形态发生蛋白-2 (BMP-2) 转基因。IL-1Ra 表达的受控诱导可保护 CDM 半球免受炎症介导的降解,并支持在存在 IL-1 的情况下产生强健的骨和软骨组织。在不存在炎症刺激的情况下,受控细胞重塑被用作融合过表达 BMP-2 和 TGF-β3 的同心 CDM 半球成单个双层骨软骨构建体的机制。我们的研究结果表明,诱导性和可调谐转基因的特异性传递赋予了 CDM 支架重塑和新组织组成的空间和时间控制。此外,这些构建体提供了一个具有微生理功能的体外关节类器官模型,具有特异性、可调谐和可诱导的蛋白质传递系统,用于研究在骨软骨界面处对促合成代谢和/或炎症信号的时空反应。

相似文献

1
Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs.
Biomaterials. 2018 Sep;177:161-175. doi: 10.1016/j.biomaterials.2018.04.049. Epub 2018 May 30.
2
Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds.
Biomaterials. 2016 Jun;91:57-72. doi: 10.1016/j.biomaterials.2016.03.012. Epub 2016 Mar 9.
3
Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4513-22. doi: 10.1073/pnas.1601639113. Epub 2016 Jul 18.
4
Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.
Acta Biomater. 2017 Nov;63:210-226. doi: 10.1016/j.actbio.2017.09.008. Epub 2017 Sep 9.
5
Tissue-engineered cartilage with inducible and tunable immunomodulatory properties.
Biomaterials. 2014 Jul;35(22):5921-31. doi: 10.1016/j.biomaterials.2014.03.073. Epub 2014 Apr 22.
6
Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering.
Biomaterials. 2018 Apr;161:240-255. doi: 10.1016/j.biomaterials.2018.01.006. Epub 2018 Jan 3.
7
Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):E798-806. doi: 10.1073/pnas.1321744111. Epub 2014 Feb 18.
10
Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology.
Biomed Mater. 2019 Oct 3;14(6):065010. doi: 10.1088/1748-605X/ab4243.

引用本文的文献

1
Gene-activation of surface-modified 3D printed calcium phosphate scaffolds.
BMC Chem. 2025 Feb 21;19(1):47. doi: 10.1186/s13065-025-01390-9.
2
Research progress of gene therapy combined with tissue engineering to promote bone regeneration.
APL Bioeng. 2024 Sep 18;8(3):031502. doi: 10.1063/5.0200551. eCollection 2024 Sep.
3
Use of allograft bone matrix in clinical orthopedics.
Regen Med. 2024 May 3;19(5):247-256. doi: 10.1080/17460751.2024.2353473. Epub 2024 Jul 19.
4
Desktop-Stereolithography 3D Printing of a Decellularized Extracellular Matrix/Mesenchymal Stem Cell Exosome Bioink for Vaginal Reconstruction.
Tissue Eng Regen Med. 2024 Aug;21(6):943-957. doi: 10.1007/s13770-024-00649-x. Epub 2024 Jun 27.
5
Osteochondral organoids: current advances, applications, and upcoming challenges.
Stem Cell Res Ther. 2024 Jun 21;15(1):183. doi: 10.1186/s13287-024-03790-5.
7
Engineering the next generation of theranostic biomaterials with synthetic biology.
Bioact Mater. 2023 Nov 3;32:514-529. doi: 10.1016/j.bioactmat.2023.10.018. eCollection 2024 Feb.
8
Analysis of the mechanism of curcumin against osteoarthritis using metabolomics and transcriptomics.
Naunyn Schmiedebergs Arch Pharmacol. 2024 May;397(5):3313-3329. doi: 10.1007/s00210-023-02785-y. Epub 2023 Nov 8.
9
Current Knowledge and Future Perspectives of Exosomes as Nanocarriers in Diagnosis and Treatment of Diseases.
Int J Nanomedicine. 2023 Aug 21;18:4751-4778. doi: 10.2147/IJN.S417422. eCollection 2023.
10
Administration of mRNA-Nanomedicine-Augmented Calvarial Defect Healing via Endochondral Ossification.
Pharmaceutics. 2023 Jul 17;15(7):1965. doi: 10.3390/pharmaceutics15071965.

本文引用的文献

1
Porous Scaffolds Derived from Devitalized Tissue Engineered Cartilaginous Matrix Support Chondrogenesis of Adult Stem Cells.
ACS Biomater Sci Eng. 2017 Jun 12;3(6):1075-1082. doi: 10.1021/acsbiomaterials.7b00019. Epub 2017 Apr 28.
2
Microsphere-Based Osteochondral Scaffolds Carrying Opposing Gradients Of Decellularized Cartilage And Demineralized Bone Matrix.
ACS Biomater Sci Eng. 2017 Sep 11;3(9):1955-1963. doi: 10.1021/acsbiomaterials.6b00071. Epub 2016 Jun 23.
4
Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.
Acta Biomater. 2017 Nov;63:210-226. doi: 10.1016/j.actbio.2017.09.008. Epub 2017 Sep 9.
5
CNT-decellularized cartilage hybrids for tissue engineering applications.
Biomed Mater. 2017 Oct 25;12(6):065008. doi: 10.1088/1748-605X/aa8435.
6
Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.
J Orthop Res. 2018 Jan;36(1):52-63. doi: 10.1002/jor.23670. Epub 2017 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验