Suppr超能文献

支架介导的慢病毒转导在软骨功能组织工程中的应用。

Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage.

机构信息

Departments of Orthopaedic Surgery and Cell Biology, Duke University Medical Center, Durham, NC 27710.

出版信息

Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):E798-806. doi: 10.1073/pnas.1321744111. Epub 2014 Feb 18.

Abstract

The ability to develop tissue constructs with matrix composition and biomechanical properties that promote rapid tissue repair or regeneration remains an enduring challenge in musculoskeletal engineering. Current approaches require extensive cell manipulation ex vivo, using exogenous growth factors to drive tissue-specific differentiation, matrix accumulation, and mechanical properties, thus limiting their potential clinical utility. The ability to induce and maintain differentiation of stem cells in situ could bypass these steps and enhance the success of engineering approaches for tissue regeneration. The goal of this study was to generate a self-contained bioactive scaffold capable of mediating stem cell differentiation and formation of a cartilaginous extracellular matrix (ECM) using a lentivirus-based method. We first showed that poly-L-lysine could immobilize lentivirus to poly(ε-caprolactone) films and facilitate human mesenchymal stem cell (hMSC) transduction. We then demonstrated that scaffold-mediated gene delivery of transforming growth factor β3 (TGF-β3), using a 3D woven poly(ε-caprolactone) scaffold, induced robust cartilaginous ECM formation by hMSCs. Chondrogenesis induced by scaffold-mediated gene delivery was as effective as traditional differentiation protocols involving medium supplementation with TGF-β3, as assessed by gene expression, biochemical, and biomechanical analyses. Using lentiviral vectors immobilized on a biomechanically functional scaffold, we have developed a system to achieve sustained transgene expression and ECM formation by hMSCs. This method opens new avenues in the development of bioactive implants that circumvent the need for ex vivo tissue generation by enabling the long-term goal of in situ tissue engineering.

摘要

在肌肉骨骼工程学中,开发具有促进快速组织修复或再生的基质组成和生物力学特性的组织构建体仍然是一个持久的挑战。目前的方法需要在体外进行广泛的细胞操作,使用外源性生长因子来驱动组织特异性分化、基质积累和机械性能,从而限制了它们的潜在临床应用。诱导和维持干细胞在体内分化的能力可以绕过这些步骤,提高组织再生工程方法的成功率。本研究的目的是利用基于慢病毒的方法生成一种自包含的生物活性支架,能够介导干细胞分化和形成软骨细胞外基质 (ECM)。我们首先表明,聚-L-赖氨酸可以将慢病毒固定在聚(ε-己内酯)薄膜上,并促进人间充质干细胞 (hMSC) 的转导。然后我们证明了使用 3D 编织聚(ε-己内酯)支架进行支架介导的转化生长因子β3 (TGF-β3) 基因传递可以诱导 hMSCs 产生强健的软骨 ECM。通过支架介导的基因传递诱导的软骨生成与涉及 TGF-β3 培养基补充的传统分化方案一样有效,如基因表达、生化和生物力学分析所示。通过将固定在生物力学功能支架上的慢病毒载体,我们开发了一种系统,可通过 hMSCs 实现持续的转基因表达和 ECM 形成。这种方法为生物活性植入物的开发开辟了新途径,通过实现原位组织工程的长期目标,避免了体外组织生成的需要。

相似文献

引用本文的文献

3
Dynamic allostery drives autocrine and paracrine TGF-β signaling.动态变构驱动自分泌和旁分泌 TGF-β 信号转导。
Cell. 2024 Oct 31;187(22):6200-6219.e23. doi: 10.1016/j.cell.2024.08.036. Epub 2024 Sep 16.
5
Engineering approaches for RNA-based and cell-based osteoarthritis therapies.基于 RNA 和细胞的骨关节炎治疗的工程方法。
Nat Rev Rheumatol. 2024 Feb;20(2):81-100. doi: 10.1038/s41584-023-01067-4. Epub 2024 Jan 22.
8
Gene Therapy for Regenerative Medicine.用于再生医学的基因治疗
Pharmaceutics. 2023 Mar 6;15(3):856. doi: 10.3390/pharmaceutics15030856.

本文引用的文献

1
Fatigue behavior of porous biomaterials manufactured using selective laser melting.使用选择性激光熔化制造的多孔生物材料的疲劳行为。
Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4849-58. doi: 10.1016/j.msec.2013.08.006. Epub 2013 Aug 13.
6
Arthritis gene therapy and its tortuous path into the clinic.关节炎基因治疗及其坎坷的临床之路。
Transl Res. 2013 Apr;161(4):205-16. doi: 10.1016/j.trsl.2013.01.002. Epub 2013 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验