Suppr超能文献

双模混合成像系统利用放射光和声音揭示动脉粥样硬化斑块的分子病理学。

A Dual-Modality Hybrid Imaging System Harnesses Radioluminescence and Sound to Reveal Molecular Pathology of Atherosclerotic Plaques.

机构信息

Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, USA.

Molecular Imaging Program at Stanford University (MIPS), Stanford University School of Medicine, Stanford, USA.

出版信息

Sci Rep. 2018 Jun 12;8(1):8992. doi: 10.1038/s41598-018-26696-8.

Abstract

Atherosclerosis is a progressive inflammatory condition caused by an unstable lesion, called thin-cap fibro atheromata (TCFA) that underlies coronary artery disease (CAD)-one of the leading causes of death worldwide. Therefore, early clinical diagnosis and effective risk stratification is important for CAD management as well as preventing progression to catastrophic events. However, early detection could be difficult due to their small size, motion, obscuring F-FDG uptake by adjacent myocardium, and complex morphological/biological features. To overcome these limitations, we developed a catheter-based Circumferential-Intravascular-Radioluminescence-Photoacoustic-Imaging (CIRPI) system that can detect vulnerable plaques in coronary arteries and characterizes them with respect to pathology and biology. Our CIRPI system combined two imaging modalities: Circumferential Radioluminescence Imaging (CRI) and PhotoAcoustic Tomography (PAT) within a novel optical probe. The probe's CaF:Eu based scintillating imaging window provides a 360° view of human (n = 7) and murine carotid (n = 10) arterial plaques by converting β-particles into visible photons during F-FDG decay. A 60× and 63× higher radioluminescent signals were detected from the human and murine plaque inflammations, respectively, compared to the control. The system's photoacoustic imaging provided a comprehensive analysis of the plaque compositions and its morphologic information. These results were further verified with IVIS-200, immunohistochemical analysis, and autoradiography.

摘要

动脉粥样硬化是一种由不稳定病变引起的进行性炎症性疾病,称为薄帽纤维粥样斑块(TCFA),它是冠状动脉疾病(CAD)的基础,CAD 是全球主要死亡原因之一。因此,早期临床诊断和有效的风险分层对于 CAD 的管理以及预防灾难性事件的进展非常重要。然而,由于其体积小、运动、邻近心肌对 F-FDG 摄取的遮挡以及复杂的形态/生物学特征,早期检测可能很困难。为了克服这些限制,我们开发了一种基于导管的圆周血管内放射发光-光声成像(CIRPI)系统,该系统可以检测冠状动脉中的易损斑块,并根据病理学和生物学对其进行特征描述。我们的 CIRPI 系统结合了两种成像模式:圆周放射发光成像(CRI)和光声断层扫描(PAT),并在一种新型光学探头中进行了组合。探头的基于 CaF:Eu 的闪烁成像窗口通过在 F-FDG 衰变过程中将 β 粒子转化为可见光子,为人类(n=7)和鼠颈动脉(n=10)动脉斑块提供了 360°的视野。与对照组相比,人类和鼠斑块炎症分别检测到 60×和 63×更高的放射发光信号。该系统的光声成像提供了对斑块成分及其形态信息的全面分析。这些结果还通过 IVIS-200、免疫组织化学分析和放射自显影进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/159d/5997702/815a1669b641/41598_2018_26696_Fig1_HTML.jpg

相似文献

2
In Vivo Translation of the CIRPI System: Revealing Molecular Pathology of Rabbit Aortic Atherosclerotic Plaques.
J Nucl Med. 2019 Sep;60(9):1308-1316. doi: 10.2967/jnumed.118.222471. Epub 2019 Feb 8.
3
Fiber-optic system for dual-modality imaging of glucose probes 18F-FDG and 6-NBDG in atherosclerotic plaques.
PLoS One. 2014 Sep 18;9(9):e108108. doi: 10.1371/journal.pone.0108108. eCollection 2014.
4
Scintillating balloon-enabled fiber-optic system for radionuclide imaging of atherosclerotic plaques.
J Nucl Med. 2015 May;56(5):771-7. doi: 10.2967/jnumed.114.153239. Epub 2015 Apr 9.
6
Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque.
Cerebrovasc Dis. 2013;35(4):370-7. doi: 10.1159/000348846. Epub 2013 Apr 30.
7
Complementary value of cardiac FDG PET and CT for the characterization of atherosclerotic disease.
Radiographics. 2011 Sep-Oct;31(5):1255-69. doi: 10.1148/rg.315115028.
9
Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
JACC Cardiovasc Imaging. 2016 Sep;9(9):1087-1095. doi: 10.1016/j.jcmg.2016.01.034. Epub 2016 Aug 17.
10
64Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques.
J Nucl Med. 2015 Jun;56(6):939-44. doi: 10.2967/jnumed.115.155176. Epub 2015 Apr 23.

引用本文的文献

1
Autofluorescence properties of balloon polymers used in medical applications.
J Biomed Opt. 2020 Oct;25(10). doi: 10.1117/1.JBO.25.10.106004.
3
Single-Pixel MEMS Imaging Systems.
Micromachines (Basel). 2020 Feb 20;11(2):219. doi: 10.3390/mi11020219.
4
A Metabolic Intravascular Platform to Study FDG Uptake in Vascular Injury.
Cardiovasc Eng Technol. 2020 Jun;11(3):328-336. doi: 10.1007/s13239-020-00457-z. Epub 2020 Jan 30.
5
In Vivo Translation of the CIRPI System: Revealing Molecular Pathology of Rabbit Aortic Atherosclerotic Plaques.
J Nucl Med. 2019 Sep;60(9):1308-1316. doi: 10.2967/jnumed.118.222471. Epub 2019 Feb 8.
6
MEMS Actuators for Optical Microendoscopy.
Micromachines (Basel). 2019 Jan 24;10(2):85. doi: 10.3390/mi10020085.

本文引用的文献

1
Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging.
JACC Cardiovasc Imaging. 2016 Nov;9(11):1304-1314. doi: 10.1016/j.jcmg.2015.11.020. Epub 2016 Mar 9.
2
Photoacoustic imaging of human coronary atherosclerosis in two spectral bands.
Photoacoustics. 2013 Dec 5;2(1):12-20. doi: 10.1016/j.pacs.2013.11.003. eCollection 2014 Mar.
4
In vivo molecular imaging of atherosclerotic lesions in ApoE-/- mice using VCAM-1-specific, 99mTc-labeled peptidic sequences.
J Nucl Med. 2013 Aug;54(8):1442-9. doi: 10.2967/jnumed.112.115675. Epub 2013 May 29.
5
Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes.
J Am Heart Assoc. 2012 Dec;1(6):e002568. doi: 10.1161/JAHA.112.002568. Epub 2012 Dec 19.
6
Improving quantification of intravascular fluorescence imaging using structural information.
Phys Med Biol. 2012 Oct 21;57(20):6395-406. doi: 10.1088/0031-9155/57/20/6395. Epub 2012 Sep 21.
7
Protein cage nanoparticles bearing the LyP-1 peptide for enhanced imaging of macrophage-rich vascular lesions.
ACS Nano. 2011 Apr 26;5(4):2493-502. doi: 10.1021/nn102863y. Epub 2011 Mar 21.
8
Cardiovascular molecular imaging: focus on clinical translation.
Circulation. 2011 Feb 1;123(4):425-43. doi: 10.1161/CIRCULATIONAHA.109.916338.
9
FeCo/graphite nanocrystals for multi-modality imaging of experimental vascular inflammation.
PLoS One. 2011 Jan 14;6(1):e14523. doi: 10.1371/journal.pone.0014523.
10
Human ferritin cages for imaging vascular macrophages.
Biomaterials. 2011 Feb;32(5):1430-7. doi: 10.1016/j.biomaterials.2010.09.029. Epub 2010 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验