Suppr超能文献

用于医疗应用的气球聚合物的荧光特性。

Autofluorescence properties of balloon polymers used in medical applications.

机构信息

The George Washington University, Department of Pharmacology and Physiology, Washington, DC, United States.

Nocturnal Product Development, LLC, Durham, North Carolina, United States.

出版信息

J Biomed Opt. 2020 Oct;25(10). doi: 10.1117/1.JBO.25.10.106004.

Abstract

SIGNIFICANCE

For use in medical balloons and related clinical applications, polymers are usually designed for transparency under illumination with white-light sources. However, when illuminated with ultraviolet (UV) or blue light, most of these materials autofluoresce in the visible range, which can be a concern for modalities that rely on tissue autofluorescence for diagnostic or therapeutic purposes.

AIM

A search for published information on spectral properties of polymers that can be used for medical balloon manufacturing revealed a scarcity of published information on this subject. The aim of these studies was to address this gap.

APPROACH

The autofluorescence properties of polymers used in medical balloon manufacturing were examined for their suitability for hyperspectral imaging and related applications. Excitation-emission matrices of different balloon materials were acquired within the 320- to 620-nm spectral range. In parallel, autofluorescence profiles from the 420- to 620-nm range were extracted from hyperspectral datasets of the same samples illuminated with UV light. The list of tested polymers included polyurethanes, nylon, polyethylene terephthalate (PET), polyether block amide (PEBAX), vulcanized silicone, thermoplastic elastomers with and without talc, and cyclic olefin copolymers, known by their trade name TOPAS.

RESULTS

Each type of polymer exhibited a specific pattern of autofluorescence. Polyurethanes, PET, and thermoplastic elastomers containing talc had the highest autofluorescence values, while sheets made of nylon, PEBAX, and TOPAS exhibited negligible autofluorescence. Hyperspectral imaging was used to illustrate how the choice of specific balloon material can impact the ability of principal component analysis to reveal the ablated cardiac tissue.

CONCLUSIONS

The data revealed significant differences between autofluorescence profiles of the polymers and pointed to the most promising balloon materials for clinical implementation of approaches that depend on tissue autofluorescence.

摘要

意义

对于在医用球囊和相关临床应用中使用,聚合物通常设计为在白光光源照射下透明。然而,当用紫外线 (UV) 或蓝光照射时,这些材料中的大多数在可见范围内自发荧光,这可能是依赖组织自发荧光进行诊断或治疗目的的模式的一个问题。

目的

搜索可用于制造医用球囊的聚合物的光谱特性的已发表信息表明,关于这个主题的已发表信息很少。这些研究的目的是解决这一差距。

方法

检查了用于制造医用球囊的聚合物的自发荧光特性,以确定它们是否适合高光谱成像和相关应用。在 320-620nm 光谱范围内获取了不同球囊材料的自发荧光发射矩阵。同时,从用紫外线照射的相同样品的高光谱数据集中提取了来自 420-620nm 范围的自发荧光轮廓。测试的聚合物包括聚醚氨酯、尼龙、聚对苯二甲酸乙二醇酯 (PET)、聚醚嵌段酰胺 (PEBAX)、硫化硅、有和没有滑石粉的热塑性弹性体以及环状烯烃共聚物,它们的商品名为 TOPAS。

结果

每种类型的聚合物都表现出特定的自发荧光模式。聚氨酯、PET 和含有滑石粉的热塑性弹性体具有最高的自发荧光值,而由尼龙、PEBAX 和 TOPAS 制成的薄片则表现出可忽略不计的自发荧光。高光谱成像用于说明特定球囊材料的选择如何影响主成分分析揭示消融的心脏组织的能力。

结论

数据显示聚合物的自发荧光谱之间存在显著差异,并指出了最有希望用于临床实施依赖组织自发荧光的方法的球囊材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1daf/7575097/ed1c4daae265/JBO-025-106004-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验