Suppr超能文献

卵巢癌生存的综合多组学预测因子。

Integrated multiomic predictors for ovarian cancer survival.

机构信息

Department of Epidemiology, UCLA Fielding School of Public Health, CHS, Charles E. Young Dr. South, Los Angeles, CA, USA.

Department of Surgery, Revlon/UCLA Breast Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

出版信息

Carcinogenesis. 2018 Jul 3;39(7):860-868. doi: 10.1093/carcin/bgy055.

Abstract

Increasingly affordable high-throughput molecular profiling technologies have made feasible the measurement of omics-wide interindividual variations for the purposes of predicting cancer prognosis. While multiple types of genetic, epigenetic and expression changes have been implicated in ovarian cancer, existing prognostic biomarker strategies are constrained to analyzing a single class of molecular variations. The extra predictive power afforded by the integration of multiple omics types remains largely unexplored. In this study, we performed integrative analysis on tumor-based exome-, transcriptome- and methylome-wide molecular profiles from The Cancer Genome Atlas (TCGA) for variations in cancer-relevant genes to construct robust, cross-validated multiomic predictors for ovarian cancer survival. These integrated polygenic survival scores (PSSs) were able to predict 5-year overall (OS) and progression-free survival in the Caucasian subsample with high accuracy (AUROC = 0.87 and 0.81, respectively). These findings suggest that the PSSs are able to predict long-term OS in TCGA patients with accuracy beyond that of previously proposed protein-based biomarker strategies. Our findings reveal the promise of an integrated omics-based approach in enhancing existing prognostic strategies. Future investigations should be aimed toward prospective external validation, strategies for standardizing application and the integration of germline variants.

摘要

高通量分子分析技术的成本不断降低,使得测量全基因组个体间的差异以预测癌症预后成为可能。虽然多种类型的遗传、表观遗传和表达变化都与卵巢癌有关,但现有的预后生物标志物策略仅限于分析单一类型的分子变化。通过整合多种组学类型所提供的额外预测能力在很大程度上仍未得到探索。在这项研究中,我们对癌症基因组图谱(TCGA)中的肿瘤外显子组、转录组和甲基组的分子谱进行了综合分析,以研究癌症相关基因的变异,从而构建稳健的、经过交叉验证的卵巢癌生存多组学预测因子。这些综合的多基因生存评分(PSS)能够以高准确度预测高加索亚组患者的 5 年总生存期(OS)和无进展生存期(AUROC=0.87 和 0.81)。这些发现表明,PSS 能够以高于先前提出的基于蛋白质的生物标志物策略的准确度预测 TCGA 患者的长期 OS。我们的研究结果表明,基于整合组学的方法在增强现有的预后策略方面具有广阔的应用前景。未来的研究应着眼于前瞻性的外部验证、标准化应用的策略以及种系变异的整合。

相似文献

1
Integrated multiomic predictors for ovarian cancer survival.
Carcinogenesis. 2018 Jul 3;39(7):860-868. doi: 10.1093/carcin/bgy055.
3
Multi-omics in high-grade serous ovarian cancer: Biomarkers from genome to the immunome.
Am J Reprod Immunol. 2018 Aug;80(2):e12975. doi: 10.1111/aji.12975. Epub 2018 May 21.
5
Evaluation of Epigenetic Drug Targeting of Heterogenous Tumor Cell Fractions Using Potential Biomarkers of Response in Ovarian Cancer.
Clin Cancer Res. 2015 Nov 15;21(22):5151-63. doi: 10.1158/1078-0432.CCR-15-0505. Epub 2015 Jun 30.
7
Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
J Biomed Inform. 2015 Aug;56:220-8. doi: 10.1016/j.jbi.2015.05.019. Epub 2015 Jun 3.
9
Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
Bioinformatics. 2015 Aug 15;31(16):2607-13. doi: 10.1093/bioinformatics/btv164. Epub 2015 Mar 24.

引用本文的文献

1
Ovarian Cancer: Multi-Omics Data Integration.
Int J Mol Sci. 2025 Jun 21;26(13):5961. doi: 10.3390/ijms26135961.
2
Predicting Survival Among Colorectal Cancer Patients: Development and Validation of Polygenic Survival Score.
Clin Exp Gastroenterol. 2024 Oct 14;17:317-329. doi: 10.2147/CEG.S464324. eCollection 2024.
3
A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC.
Front Oncol. 2023 Jul 14;13:1171582. doi: 10.3389/fonc.2023.1171582. eCollection 2023.
6
Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
Sci Rep. 2021 Mar 18;11(1):6265. doi: 10.1038/s41598-021-85285-4.

本文引用的文献

2
Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples.
J Natl Cancer Inst. 2014 Apr 3;106(5):dju048. doi: 10.1093/jnci/dju048.
3
A longitudinal analysis with CA-125 to predict overall survival in patients with ovarian cancer.
J Gynecol Oncol. 2014 Jan;25(1):51-7. doi: 10.3802/jgo.2014.25.1.51. Epub 2014 Jan 8.
4
Cancer genome landscapes.
Science. 2013 Mar 29;339(6127):1546-58. doi: 10.1126/science.1235122.
5
Biomarker failures.
Clin Chem. 2013 Jan;59(1):202-4. doi: 10.1373/clinchem.2012.185801. Epub 2012 Sep 20.
6
High preoperative blood levels of HE4 predicts poor prognosis in patients with ovarian cancer.
J Ovarian Res. 2012 Aug 21;5(1):20. doi: 10.1186/1757-2215-5-20.
7
Prognostic biomarkers in ovarian cancer.
Cancer Biomark. 2010;8(4-5):231-51. doi: 10.3233/CBM-2011-0212.
8
Serum human epididymis protein 4 and risk for ovarian malignancy algorithm as new diagnostic and prognostic tools for epithelial ovarian cancer management.
Cancer Epidemiol Biomarkers Prev. 2011 Dec;20(12):2496-506. doi: 10.1158/1055-9965.EPI-11-0635. Epub 2011 Oct 25.
9
Serum HE4 level is an independent prognostic factor in epithelial ovarian cancer.
Ann Surg Oncol. 2012 May;19(5):1707-12. doi: 10.1245/s10434-011-1943-5. Epub 2011 Jul 21.
10
Prognostic impact of prechemotherapy serum levels of HER2, CA125, and HE4 in ovarian cancer patients.
Int J Gynecol Cancer. 2011 Aug;21(6):1040-7. doi: 10.1097/IGC.0b013e31821e052e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验