Department of Epidemiology, UCLA Fielding School of Public Health, CHS, Charles E. Young Dr. South, Los Angeles, CA, USA.
Department of Surgery, Revlon/UCLA Breast Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Carcinogenesis. 2018 Jul 3;39(7):860-868. doi: 10.1093/carcin/bgy055.
Increasingly affordable high-throughput molecular profiling technologies have made feasible the measurement of omics-wide interindividual variations for the purposes of predicting cancer prognosis. While multiple types of genetic, epigenetic and expression changes have been implicated in ovarian cancer, existing prognostic biomarker strategies are constrained to analyzing a single class of molecular variations. The extra predictive power afforded by the integration of multiple omics types remains largely unexplored. In this study, we performed integrative analysis on tumor-based exome-, transcriptome- and methylome-wide molecular profiles from The Cancer Genome Atlas (TCGA) for variations in cancer-relevant genes to construct robust, cross-validated multiomic predictors for ovarian cancer survival. These integrated polygenic survival scores (PSSs) were able to predict 5-year overall (OS) and progression-free survival in the Caucasian subsample with high accuracy (AUROC = 0.87 and 0.81, respectively). These findings suggest that the PSSs are able to predict long-term OS in TCGA patients with accuracy beyond that of previously proposed protein-based biomarker strategies. Our findings reveal the promise of an integrated omics-based approach in enhancing existing prognostic strategies. Future investigations should be aimed toward prospective external validation, strategies for standardizing application and the integration of germline variants.
高通量分子分析技术的成本不断降低,使得测量全基因组个体间的差异以预测癌症预后成为可能。虽然多种类型的遗传、表观遗传和表达变化都与卵巢癌有关,但现有的预后生物标志物策略仅限于分析单一类型的分子变化。通过整合多种组学类型所提供的额外预测能力在很大程度上仍未得到探索。在这项研究中,我们对癌症基因组图谱(TCGA)中的肿瘤外显子组、转录组和甲基组的分子谱进行了综合分析,以研究癌症相关基因的变异,从而构建稳健的、经过交叉验证的卵巢癌生存多组学预测因子。这些综合的多基因生存评分(PSS)能够以高准确度预测高加索亚组患者的 5 年总生存期(OS)和无进展生存期(AUROC=0.87 和 0.81)。这些发现表明,PSS 能够以高于先前提出的基于蛋白质的生物标志物策略的准确度预测 TCGA 患者的长期 OS。我们的研究结果表明,基于整合组学的方法在增强现有的预后策略方面具有广阔的应用前景。未来的研究应着眼于前瞻性的外部验证、标准化应用的策略以及种系变异的整合。