Liu Luojia, Miao Licheng, Li Lin, Li Fujun, Lu Yong, Shang Zhenfeng, Chen Jun
State Key Laboratory of Elemento-Organic Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry , Nankai University , Tianjin 300071 , China.
J Phys Chem Lett. 2018 Jul 5;9(13):3573-3579. doi: 10.1021/acs.jpclett.8b01123. Epub 2018 Jun 15.
This work is pioneering to introduce molecular electrostatic potential (MESP) to investigate the interaction between lithium ions and organic electrode molecules. The electrostatic potential on the van der Waals surface of the electrode molecule is calculated, and then the coordinates and relative values of the local minima of MESP can be correlated to the Li binding sites and sequence on an organic small molecule, respectively. This suggests a gradual lithiation process. Similar calculations are extended to polymers and even organic crystals. The operation process of MESP for these systems is explained in detail. Through providing accurate and visualizable lithium binding sites, MESP can give precise prediction of the lithiated structures and reaction mechanism of organic electrode materials. It will become a new theoretical tool for determining the feasibility of organic electrode materials for alkali metal ion batteries.
这项工作率先引入分子静电势(MESP)来研究锂离子与有机电极分子之间的相互作用。计算电极分子范德华表面上的静电势,然后MESP局部最小值的坐标和相对值可分别与有机小分子上的锂结合位点和序列相关联。这表明了一个逐渐锂化的过程。类似的计算扩展到聚合物甚至有机晶体。详细解释了这些体系中MESP的操作过程。通过提供准确且可视化的锂结合位点,MESP可以精确预测有机电极材料的锂化结构和反应机理。它将成为确定碱金属离子电池有机电极材料可行性的一种新的理论工具。