Suppr超能文献

在硫化铜纳米片中锂化过程中的动力学驱动的相转变。

Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes.

机构信息

Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States.

Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11953, United States.

出版信息

Nano Lett. 2017 Sep 13;17(9):5726-5733. doi: 10.1021/acs.nanolett.7b02694. Epub 2017 Aug 17.

Abstract

Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van der Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.

摘要

二维(2D)过渡金属硫属化物由于其独特的层状结构可容纳可逆的锂离子插入,因此被广泛研究并用作锂离子电池的电极材料。实时观察和深入了解这些材料在锂化过程中的相变对于通过控制结构和反应途径来提高电池性能至关重要。在这里,我们使用原位透射电子显微镜方法研究了单个硫化铜(CuS)纳米片中在锂化过程中的结构、形态和化学演变。我们报告了一种高度动力学驱动的相变,其中锂离子在初始阶段迅速嵌入到 2D 范德华堆叠的层间,进一步的锂化通过置换反应机制导致 Cu 挤出,这与典型的转换反应不同。密度泛函理论计算证实了热力学有利和动力学驱动的反应途径。我们的发现阐明了非平衡条件下 Li/CuS 体系的反应途径,并为一般过渡金属硫化物的原子级锂化机制提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验