Chen Qiang, Wei Wei
Department of Neurobiology, The University of Chicago , Chicago, Illinois.
Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois.
J Neurophysiol. 2018 Sep 1;120(3):1153-1161. doi: 10.1152/jn.00716.2017. Epub 2018 Jun 13.
Direction selectivity is a fundamental computation in the visual system and is first computed by the direction-selective circuit in the mammalian retina. Although landmark discoveries on the neural basis of direction selectivity have been made in the rabbit, many technological advances designed for the mouse have emerged, making this organism a favored model for investigating the direction-selective circuit at the molecular, synaptic, and network levels. Studies using diverse motion stimuli in the mouse retina demonstrate that retinal direction selectivity is implemented by multilayered mechanisms. This review begins with a set of central mechanisms that are engaged under a wide range of visual conditions and then focuses on additional layers of mechanisms that are dynamically recruited under different visual stimulus conditions. Together, recent findings allude to an emerging theme: robust motion detection in the natural environment requires flexible neural mechanisms.
方向选择性是视觉系统中的一种基本计算,最初由哺乳动物视网膜中的方向选择性电路进行计算。尽管在兔子身上已经取得了关于方向选择性神经基础的里程碑式发现,但许多为小鼠设计的技术进步已经出现,使这种生物体成为在分子、突触和网络水平上研究方向选择性电路的首选模型。在小鼠视网膜中使用多种运动刺激的研究表明,视网膜方向选择性是通过多层机制实现的。本综述首先介绍了在广泛的视觉条件下起作用的一组核心机制,然后重点关注在不同视觉刺激条件下动态招募的其他机制层。总之,最近的研究结果暗示了一个新出现的主题:在自然环境中进行强大的运动检测需要灵活的神经机制。