Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
Phys Chem Chem Phys. 2018 Jun 27;20(25):17009-17019. doi: 10.1039/c8cp03078b.
In this paper, we present a thorough study of the electronic structures and binding energies of O2 to iron and manganese porphyrins (FeP and MnP), employing a state-of-the-art computational technique known as second-order perturbation theory based on density matrix renormalization group (DMRG-CASPT2). By investigating an extensive list of different binding modes and spin states, we provide a clear and conclusive description of the ground state of MnP-O2, confirming available experimental evidences. Our results show that MnP-O2 favours a side-on quartet structure, with strong charge transfer between MnP and O2. We also calculated the standard binding enthalpies of O2 to different metal porphyrins and showed that an agreement between calculated results and experimental data to within 2 kcal mol-1 can be achieved. Our calculations confirm the experimental observation that the binding of O2 to manganese porphyrin is stronger by around 4-6 kcal mol-1 than to the corresponding ferrous porphyrin.
在本文中,我们采用基于密度矩阵重整化群(DMRG-CASPT2)的二阶微扰理论这一最先进的计算技术,对 O2 与铁卟啉(FeP)和锰卟啉(MnP)的电子结构和结合能进行了深入研究。通过研究大量不同的结合模式和自旋态,我们对 MnP-O2 的基态进行了清晰而明确的描述,证实了现有的实验证据。我们的结果表明,MnP-O2 倾向于侧式四重态结构,MnP 和 O2 之间存在强烈的电荷转移。我们还计算了 O2 与不同金属卟啉的标准结合焓,并表明计算结果与实验数据之间可以达到 2 kcal mol-1 的一致性。我们的计算证实了实验观察到的 O2 与锰卟啉的结合比相应的亚铁卟啉强约 4-6 kcal mol-1 的现象。